
OpenZeppelin
Contracts
Release v5.4 Diff
Audit

| security

July 17, 2025

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    7
ERC-7913 (Signatures by Address-Less Keys) 7

ERC-7821 (Batch Executor Interface) 8

EIP-2935 (Access to Historical Block Hashes) 8

Keyed Nonces 8

Enhancements to EnumerableMap and EnumerableSet 8

Ports from Community Contracts 9

Trivial Modifications 9

Security Model and Trust Assumptions ___    9

Low Severity __    10
L-01 Possible Overflow when Computing the Total Weight of ERC-7913 Multisigners 10

L-02 _setSignerWeights Does Not Check if the Weight Has Changed 11

L-03 Name for Elements in Set Struct is Potentially Confusing 11

L-04 Missing External Call Failure Check 12

L-05 Variable Names Too Similar 13

L-06 Incomplete Docstrings 13

L-07 Possible Duplicate Event Emission 15

L-08 Different Pragma Directives 15

Notes & Additional Information __    16
N-01 Minor Inconsistencies in the Implementations of Map and Set 16

N-02 Inner Mapping Only Has One Named Parameter 17

N-03 Functions Updating State Without Event Emissions 18

N-04 Redundant return Statements 18

N-05 Missing Security Contact 19

N-06 Lack of Indexed Event Parameter 20

N-07 File and Contract Names Mismatch 20

N-08 Custom Errors in require Statements 21

N-09 Documentation Improvements 22

N-10 Typographical Errors 24

N-11 Missing immediate Parameter in canCall Function 25

Client Reported __    25
CR-01 Allowing Zero Threshold in ERC-7913 Multisigner 25

OpenZeppelin Contracts Release v5.4 Diff Audit − Table of Contents − 2

CR-02 Out-of-bound Memory Read in Bytes.lastIndexOf 26

Conclusion __    27

OpenZeppelin Contracts Release v5.4 Diff Audit − Table of Contents − 3

Type Library

Timeline From 2025-06-16
To 2025-07-02

Languages Solidity

Total Issues 21 (6 resolved, 2 partially resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

0 (0 resolved)

Low Severity Issues 8 (2 resolved)

Notes & Additional
Information

11 (2 resolved, 2 partially resolved)

Client Reported
Issues

2 (2 resolved)

Summary

OpenZeppelin Contracts Release v5.4 Diff Audit − Summary − 4

Scope
OpenZeppelin audited the OpenZeppelin/openzeppelin-contracts repository at commit

f6fea857 (release v5.4). This commit was compared with commit e4f7021 (release v5.3) and all

new files were fully audited.

In scope were the following files:

contracts
├── access
│ ├── extensions
│ | ├── AccessControlDefaultAdminRules.sol
│ | └── AccessControlEnumerable.sol
│ ├── manager
| | ├── AccessManaged.sol
| | └── IAccessManager.sol
│ └── AccessControl.sol
├── account
| ├── extensions
| | ├── draft-AccountERC7579.sol
| | ├── draft-AccountERC7579Hooked.sol
| | └── ERC7821.sol
| ├── interfaces
| | └── IERC7913.sol
| ├── utils
| | └── draft-ERC7579utils.sol
| └── Account.sol
├── governance
| ├── extensions
| | ├── GovernorCountingFractional.sol
| | ├── GovernorCountingOverridable.sol
| | ├── GovernorCountingSimple.sol
| | ├── GovernorNoncesKeyed.sol
| | ├── GovernorSequentialProposalId.sol
| | ├── GovernorSettings.sol
| | ├── GovernorSuperQuorum.sol
| | ├── GovernorTimelockAccess.sol
| | ├── GovernorTimelockCompound.sol
| | ├── GovernorTimelockControl.sol
| | └── GovernorVotes.sol
| ├── Governor.sol
| └── TimeLockController.sol
├── interfaces
| └── draft-ERC7821.sol
├── token
| ├── common
| | └── ERC2981.sol
| ├── ERC20

OpenZeppelin Contracts Release v5.4 Diff Audit − Scope − 5

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/f6fea85717b1a09300c7a783554696a0d6f3df12
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/e4f70216d759d8e6a64144a9e1f7bbeed78e7079

| | ├── extensions
| | | ├── ERC20capped.sol
| | | ├── ERC20Permit.sol
| | | ├── ERC20Wrapper.sol
| | | ├── ERC1363.sol
| | | └── ERC4626.sol
| | ├── utils
| | | └── ERC1363Utils.sol
| | └── ERC20.sol
| ├── ERC721
| | ├── extensions
| | | ├── ERC721Enumerable.sol
| | | ├── ERC721Royalty.sol
| | | └── ERC721URIStorage.sol
| | ├── utils
| | | └── ERC721Utils.sol
| | └── ERC721.sol
| └── ERC1155
| ├── extensions
| | └── ERC1155Supply.sol
| ├── utils
| | ├── ERC1155Holder.sol
| | └── ERC1155Utils.sol
| └── ERC1155.sol
└── utils
 ├── cryptography
 | ├── signers
 | | └── draft-ERC7739.sol
 | ├── AbstractSigner.sol
 | ├── draft-ERC7739.sol
 | ├── EIP712.sol
 | ├── MultiSignerERC7913.sol
 | ├── MultiSignerERC7913Weighted.sol
 | ├── SignatureChecker.sol
 | ├── SignerECDSA.sol
 | ├── SignerERC7702.sol
 | ├── SignerERC7913.sol
 | ├── SignerP256.sol
 | └── SignerRSA.sol
 ├── introspection
 | └── ERC165.sol
 ├── structs
 | ├── EnumerableMap.sol
 | └── EnumerableSet.sol
 ├── Address.sol
 ├── Arrays.sol
 ├── Base64.sol
 ├── Blockhash.sol
 ├── Bytes.sol
 └── Strings.sol

OpenZeppelin Contracts Release v5.4 Diff Audit − Scope − 6

System Overview
Version 5.4 of the OpenZeppelin Contracts library introduces new features, including support

for ERC-7913, ERC-7821, EIP-2935, a keyed-nonces extension to the governance module,

enhancements to the enumerable map and set libraries, and porting of several contracts from

the OpenZeppelin/openzeppelin-community-contracts repository. In addition, multiple files

were updated with trivial modifications, such as improved documentation, imports, and minor

refactoring.

ERC-7913 (Signatures by Address-Less Keys)
The SignerERC7913 contract inherits AbstractSigner and implements signature

verification for address-less keys following the ERC-7913 standard. A multi-signature signer

system using multiple ERC-7913 signers is implemented in the MultiSignerERC7913

contract, providing the following functionality:

Manage a dynamic set of signers (e.g., EOA or smart contract signers).

Require a threshold number of valid signatures for authorizing operations.

Be compatible with both ECDSA (EOA) signatures and ERC-1271 smart contract

signatures.

The new functionality allows clients to build accounts or wallets where actions must be jointly

authorized by multiple parties.

The MultiSignerERC7913 contract is further extended by

MultiSignerERC7913Weighted , which adds support for weighted signatures. Specifically,

it assigns different positive weights to each signer, enabling more flexible governance

schemes. For example, some signers could have a higher weight than others, allowing for

weighted voting or prioritized authorization. The threshold for validation is reached when the

sum of the weights of the unique signers of a message crosses the threshold value.

Another relevant new contract is SignatureChecker , which is a helper for streamlining the

verification of ECDSA, ERC-1271, and ERC-7913 signatures.

•

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − System Overview − 7

https://github.com/OpenZeppelin/openzeppelin-community-contracts
https://eips.ethereum.org/EIPS/eip-7913
https://eips.ethereum.org/EIPS/eip-7913
https://eips.ethereum.org/EIPS/eip-1271

ERC-7821 (Batch Executor Interface)
The ERC7821 contract (and its associated interface IERC7821) implements the ERC-7821

standard for batch execution. The latter defines a standardized interface for executing one or

more function calls atomically and is intended for use by smart contract wallets, EIP-7702

EOAs, and ERC-4337 smart accounts.

EIP-2935 (Access to Historical Block Hashes)
The Blockhash contract implements block hash access beyond the 256-block limit following

the EIP-2935 standard. It preserves support for the native BLOCKHASH opcode as a fallback.

Specifically, the ability to retrieve block hashes is extended to 8191 blocks in the past. In case

the block is within the last 256 blocks, the native BLOCKHASH EVM opcode is used. In case

the block is between 256 and 8191 blocks ago, an EVM-reserved history storage contract at a

hard-coded address is called, which keeps a record of the last 8191 block hashes in its state.

For all other blocks (including future blocks), the return value is zero.

Keyed Nonces
The GovernorNoncesKeyed contract inherits Governor and NoncesKeyed and

implements the keyed nonce abstraction when voting by signature. Traditional, un-keyed

nonces prevent the replaying of votes on proposals. On the other hand, keyed nonces provide

a kind of domain separation by proposal ID, so that many nonces can be incremented in

parallel for different proposals. In the GovernorNoncesKeyed contract, this is achieved by

using the first 192 bits of the proposalID as the key.

Enhancements to EnumerableMap and
EnumerableSet
Enhancements were made to the EnumerableMap and EnumerableSet libraries. These

implement an enumerable version of Solidity's native mapping and an enumerable set data

structure, respectively. Specifically, in EnumerableMap , for all supported maps, a new keys

function has been added that returns a slice of the keys stored in the map, as opposed to the

full list of keys. In addition, a new map, BytesToBytesMap , along with all associated

methods supported by the other maps, has been implemented. In EnumerableSet , to all

supported sets, a new values function has been added for sliced access to the values in the

set, along with two new sets, Bytes and StringSet , and their associated methods.

OpenZeppelin Contracts Release v5.4 Diff Audit − System Overview − 8

https://eips.ethereum.org/EIPS/eip-7821
https://eips.ethereum.org/EIPS/eip-7702
https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-2935

Ports from Community Contracts
Multiple contracts were moved from the OpenZeppelin/openzeppelin-community-contracts

repository after minor modifications. These include verification of ECDSA, RSA, and P-256

signatures, libraries providing utility functions for ERC-7739 and ERC-7579, and a contract

implementing EIP-712.

Trivial Modifications
All files in scope that are not related to any of the new functionalities mentioned in the

preceding sections contain only trivial modifications such as documentation updates, imports,

and minor refactoring.

Security Model and Trust
Assumptions
During the audit, a trust assumption was made that the HISTORY_STORAGE_ADDRESS

hardcoded value in the Blockhash library points to the correct EVM precompile.

OpenZeppelin Contracts Release v5.4 Diff Audit − Security Model and Trust
Assumptions − 9

https://github.com/OpenZeppelin/openzeppelin-community-contracts
https://ercs.ethereum.org/ERCS/erc-7739
https://eips.ethereum.org/EIPS/eip-7579
https://eips.ethereum.org/EIPS/eip-712
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Blockhash.sol#L18C31-L18C54

Low Severity

L-01 Possible Overflow when Computing the
Total Weight of ERC-7913 Multisigners
The totalWeight function returns a uint64 value by casting getSignerCount() +

_totalExtraWeight to uint64 . However, getSignerCount returns a uint256 value.

Therefore, theoretically, an overflow may occur before the cast operation. This will happen if

the number of signers or their total weight _totalExtraWeight (or both) is close to or larger

than 2^64-1 , which is not likely to occur in practice.

Regardless of the low risk, consider reverting in case of an overflow.

Update: Resolved in pull request #5790. The team stated:

The totalWeight() does the addition of :

- getSignerCount() (an uint256)

- _totalExtraWeight (an uint64)

This add operation is done on the "uint256 space". If getSignerCount() is close to

2^256-1 , and if _totalExtraWeight makes up for the difference, then that

addition could technically overflow.

However, we are using solidity ^0.8.27 for this file. Since solidity 0.8.0 all arithmetic

operations are "checked" by default. Here there is no unchecked block, so any

overflow (prior to the casting) will revert. Solidity takes care of that.

Said otherwise: the compiler already performs overflow detection here. Doing it

ourselves would just duplicate the verification cost with no upside.

The only way we see having totalWeight() overflow though is by first setting the

signer weights so that totalWeight() is almost 2^64 and then add new signers

(with a default weight of 1). We address this scenario with the fix in the provided pull

request.

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L79
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L79
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L86
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5790/files

L-02 _setSignerWeights Does Not Check if the
Weight Has Changed
When calling the _setSignerWeights function in MultiSignerERC7913Weighted.sol ,

it is possible to pass in a list of signers and weights where one or more entries are equal to the

current signer and weight. For example, suppose signer1 is a bytes object and

_extraWeights[signer1] == 1 so that signer1 has a weight of 2, and we call

_setSignerWeights([signer1], [2]) . Then, the following happens:

extraWeightRemoved is incremented by 1.

extraWeightAdded is incremented by 1.

ERC7913SignerWeightChanged(signer1, 2) is emitted.

_totalExtraWeight is updated to the same value it was before.

_validateReachableThreshold() is called.

In the above scenario, unnecessary computations are performed and events are emitted

without a state change.

To save gas and avoid unnecessary event emissions, consider validating that for each i <

signers.length , the weight to be set for the signer is equal to the signer's current weight.

Update: Resolved in pull request #5775.

L-03 Name for Elements in Set Struct is
Potentially Confusing
Within the Set struct of the EnumerableSet library, the elements of the set are stored as a

bytes32[] array named _values . The corresponding private getter functions

_values(set) and values(set, start, end) , along with the internal getter

functions values(set) and values(set, start, end) for structs that wrap the Set

struct (e.g., Bytes32Set), are also named similarly.

While this hews closely to the terminology of mappings, it has the unfortunate consequence

that, in the keys function for the Bytes32ToBytes32Map map in EnumerableMap.sol and

throughout the file, there is phrasing such as return map._keys.values(start, end); .

However, this does not relate to the values of the enumerable map. Instead, it returns a slice of

the set of keys. This is likely to cause some confusion between the values of the outer

enumerable map with the "values" of the inner enumerable set.

1.

2.

3.

4.

5.

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L109
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L109
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L110
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L110
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L113
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L113
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L118
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L118
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L120
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L120
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5775
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L176
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L176
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L188
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L188
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L274
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L274
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L293
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L293
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L191
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol

Since "element" is the standard mathematical term for a member of a set, adopting this

terminology will help emphasize the abstraction of the Set data structure. In addition, this can

help differentiate between Set s from Solidity mappings and each of the enumerable map

structs given in EnumerableMap.sol . As such, consider renaming the _values field of the

Set struct, as well as the associated getter functions of Set and other structs that wrap it, to

elements .

Update: Acknowledged, not resolved. The team stated:

Changing from values() to elements() would be a breaking API change affecting

all EnumerableSet types, requiring ecosystem-wide updates.

However, the current naming is already reasonably clear, map._keys.values()

indicates we're accessing values from the keys collection. Since users shouldn't directly

access internal structures like _keys anyway, optimizing clarity for discouraged usage

patterns isn't a priority.

The change would also require upgradeable plugin configuration and impose significant

migration costs for minimal practical benefit. We'll keep the current naming for now,

since the theoretical improvement doesn't justify the breaking change impact.

L-04 Missing External Call Failure Check
To satisfy EEA EthTrust Security Level [S], code that makes external calls using the low-level

call functions (i.e., call , delegatecall , staticcall , send , and transfer) MUST

check the returned value from each usage to determine whether the call failed. Normally,

exceptions in subcalls 'bubble up', unless they are handled in a try-catch block. However,

Solidity defines a set of low-level call functions that do not have built-in safety checks: call ,

delegatecall , staticcall , send , and transfer . Calls made using these functions

behave differently. Specifically, they return a boolean indicating whether the call completed

successfully. As such, not explicitly testing the return values of these calls for failure may lead

to unexpected behavior in the caller contract.

The staticcall(gas(), HISTORY_STORAGE_ADDRESS, 0x00, 0x20, 0x20, 0x20)

call within the _historyStorageCall contract in Blockhash.sol is missing a failure

check.

Update: Acknowledged, not resolved. The team stated:

The staticcall to HISTORY_STORAGE_ADDRESS has guaranteed success

semantics by design:

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 12

https://entethalliance.github.io/eta-registry/security-levels-spec.html#sec-levels-one
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/Blockhash.sol#L46
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/Blockhash.sol#L46

- If EIP-2935 code exists at the address, it follows the specification and never reverts

- If no code exists, the call succeeds with empty return data

In both cases, the success boolean is always true . Adding a redundant check would

consume gas without providing any safety benefit. This is an acceptable exception to

the general rule given the well-defined behavior of EIP-2935.

L-05 Variable Names Too Similar
Similar variable names make the code challenging to read and maintain, and can introduce

confusion during the auditing process. Within MultiSignerERC7913.sol , signature is

similar to signatures . Other than the similarity, another argument in favor of renaming is that

the signature array does not contain only signatures. In fact it encodes two arrays - a

signatures and a signers array.

Consider renaming the variables using clear and descriptive variable names and adhering to a

naming convention.

Update: Acknowledged, not resolved. The team stated:

We're keeping the naming, since the team agrees that its distinction is semantically

meaningful: signature represents the composite multisig signature inspired by

ERC-1271, while signatures are the individual signatures that compose it.

This naming conveys the conceptual relationship between the aggregated signature and

its parts. The variables serve distinctly different purposes in the multisig verification

process, making the current naming both logical and maintainable.

L-06 Incomplete Docstrings
Throughout the codebase, multiple instances of incomplete docstrings were identified:

In draft-ERC7821.sol , in the execute function, the mode and executionData

parameters are not documented.

In IERC7913.sol , in the verify function:

the key , hash , signature parameters are not documented

not all return values are documented

In draft-IERC7821.sol , in the execute function, the mode and executionData

parameters are not documented.

•

•

◦

◦

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L203
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L203
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L206
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L206
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L29-L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L29-L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol#L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol#L34

In draft-IERC7821.sol , in the supportsExecutionMode function:

the mode parameter is not documented

not all return values are documented

In MultiSignerERC7913.sol , in the ERC7913SignerAdded event, the signers

parameter is not documented.

In MultiSignerERC7913.sol , in the ERC7913SignerRemoved event, the

signers parameter is not documented.

In MultiSignerERC7913.sol , in the ERC7913ThresholdSet event, the

threshold parameter is not documented.

In MultiSignerERC7913.sol , in the getSigners function:

the start and end parameters are not documented

not all return values are documented

In MultiSignerERC7913.sol , in the getSignerCount function, not all return

values are documented.

In MultiSignerERC7913.sol , in the isSigner function:

the signer parameter is not documented

not all return values are documented

In MultiSignerERC7913.sol , in the threshold function, not all return values are

documented.

In MultiSignerERC7913Weighted.sol , in the ERC7913SignerWeightChanged

event, the signer and weight parameters are not documented.

In MultiSignerERC7913Weighted.sol , in the signerWeight function:

the signer parameter is not documented

not all return values are documented

In MultiSignerERC7913Weighted.sol , in the totalWeight function, not all

return values are documented.

In SignerERC7913.sol , in the signer function, not all return values are

documented.

Consider thoroughly documenting all functions/events (and their parameters or return values)

that are part of a contract's public API. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

Update: Acknowledged, not resolved. The team stated:

The documentation pattern is intentionally consistent across the entire OpenZeppelin

library. Parameter and return value documentation is omitted because our

documentation engine doesn't render these NatSpec elements.

•

◦

◦

•

•

•

•

◦

◦

•

•

◦

◦

•

•

•

◦

◦

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 14

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L86-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L86-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L86-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L86-L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L91-L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L91-L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L96-L98
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L96-L98
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L77-L81
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L77-L81
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L79-L81
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L79-L81
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol#L40-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol#L40-L42
https://solidity.readthedocs.io/en/latest/natspec-format.html

Adding parameter/return documentation would create inconsistency with the

established codebase style without providing user-facing benefits. The current approach

prioritizes meaningful function descriptions over unused documentation elements.

L-07 Possible Duplicate Event Emission
When a setter function does not check if the incoming value is different from the existing one, it

opens up the possibility of spamming events that indicate a change even when no actual

change has occurred. Spamming identical values may confuse off-chain clients that rely on

event data to track state changes.

Within MultiSignerERC7913.sol , the _setThreshold function sets the _threshold

value and emits an event without checking if the value has changed.

Consider adding a check statement to revert the transaction if the incoming value is identical to

the existing one.

Update: Acknowledged, not resolved. The team stated:

OpenZeppelin contracts consistently allow no-ops that emit events (e.g., zero-value

transfers, unchanged approvals). Adding threshold-specific checks would break this

design pattern.

The current behavior maintains consistency across the codebase.

L-08 Different Pragma Directives
In order to clearly identify the Solidity version with which the contracts will be compiled,

pragma directives should be fixed and consistent across file imports.

Throughout the codebase, multiple instances of different pragma directives were identified:

draft-ERC7821.sol has the pragma directive pragma solidity ^0.8.20; and

imports the file draft-IERC7821.sol , which has a different pragma directive.

GovernorNoncesKeyed.sol has the pragma directive pragma solidity

^0.8.24; and imports the file NoncesKeyed.sol , which has a different pragma

directive.

MultiSignerERC7913Weighted.sol has the pragma directive pragma solidity

^0.8.27; and imports the file MultiSignerERC7913.sol , which has a different

pragma directive.

•

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Low Severity − 15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143-L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143-L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/account/extensions/draft-ERC7821.sol#L6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/account/extensions/draft-ERC7821.sol#L6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol#L6

Consider using the same fixed pragma version across all the files.

Update: Acknowledged, not resolved. The team stated:

We try to minimise the pragma each file uses. If a contract only doesn't need any feature

introduced after 0.8.20, we have no reason to not mark it ^0.8.20. We use 0.8.20 as our

minimum (for non-interface files), because it introduced push0 that we believe to be a

great optimisation.

Some files will depend on a file that uses ^0.8.20 but wil also use additional feature that

were added to the language later. In that case we use a pragma that reflect this

requirement.

We have test in place to ensure that: all contract can be compile with the pragma being

used (for example not contract that uses ^0.8.20 will be compilable with 0.8.20, and

won't use any feature introduced after that)

A consequence of this test, is that if B imports A, B's pragma will be equal or more

restrictive than A's pragma.

Notes & Additional
Information

N-01 Minor Inconsistencies in the
Implementations of Map and Set
Multiple instances of minor inconsistencies in the implementation of the methods for

BytesToBytesMap and other maps (e.g., Bytes32ToBytes32Map) were identified:

The at function for BytesToBytesMap differs from the at function for

Bytes32ToBytes32Map in that it has an implicit return .

The tryGet function for BytesToBytesMap differs from the tryGet for

Bytes32ToBytes32Map in that it avoids the explicit if-else branches.

The get function for BytesToBytesMap uses tryGet while the get function for

Bytes32ToBytes32Map duplicates the logic of the corresponding tryGet for the

type.

•

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1253
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1265
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1265
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L142
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L142
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1280
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1282
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1282
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L158
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L158

Similarly, in EnumerableSet.sol , the different methods for the StringSet and ByteSet

types name the input set variable either as set or self (e.g., self vs. set and self vs. set). In

contrast, the methods for the other types consistently use set .

Consider making the implementations consistent across the different map and set types.

Update: Partially resolved in pull request #5776. The team stated:

We partially addressed the issue by standardizing parameter naming (self → set) but

kept other inconsistencies.

BytesToBytesMap handles memory types differently than value-type maps, requiring

distinct patterns like implicit returns and specialized memory handling. These

differences are functional requirements, not stylistic inconsistencies that need

correction.

N-02 Inner Mapping Only Has One Named
Parameter
In the Bytes32ToBytes32Map and BytesToBytesMap structs, the "key" parameter of the

inner mapping is named key , but the "value" parameter is unnamed. Similarly, in the Set ,

StringSet , and BytesSet structs, the "key" parameter of the _positions mapping is

named value , but the "value" parameter is unnamed.

For consistency, consider naming both parameters in each mapping.

Update: Acknowledged, not resolved. The team stated:

Acknowledged. The naming convention is intentional and follows established patterns

across OpenZeppelin contracts (e.g., ERC20's _balances , _allowances).

Key parameters are named for clarity since they're often non-obvious. Value parameters

remain unnamed when the mapping name itself clearly indicates the stored type (e.g.,

_values mapping obviously stores values). Adding redundant naming like

mapping(bytes32 key => bytes32 value) _values would be unnecessarily

verbose.

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 17

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L522
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L580
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L664
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L722
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5776
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L70
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L70
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1190
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1190
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L513
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L513
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L650
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L650

N-03 Functions Updating State Without Event
Emissions
The _setSigner function in SignerERC7913.sol updates the state without an event

emission.

Consider emitting events whenever there are state changes to improve the clarity of the

codebase and make it less error-prone.

Update: Acknowledged, not resolved. The team stated:

This is true for all Signer*.sol contracts (SignerECDSA , SignerP256 ,

SignerRSA). All have a function _setSigner to update the key that doesn't emit an

event.

These are low level abstractions, that should interfere as little as possible with the

contracts that inherit from, them. In many cases, the key will be set at construction and

never updated.

If a user decides to expose the internal _setSigner function, they should emit an

event themselves.

N-04 Redundant return Statements
Functions that have named returns do not require explicit return statements.

Throughout the codebase, multiple instances of redundant return statements were

identified:

The return callType == ERC7579Utils.CALLTYPE_BATCH && execType ==

ERC7579Utils.EXECTYPE_DEFAULT && modeSelector ==

ModeSelector.wrap(0x00000000); statement in draft-ERC7821.sol

The return false; statement in MultiSignerERC7913.sol

The return hash.areValidSignaturesNow(signers, signatures);

statement in MultiSignerERC7913.sol

To improve code clarity, consider removing return statements from functions that have

named returns.

Update: Acknowledged, not resolved. The team stated:

Not going to fix.

•

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol#L40-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol#L40-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L39-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L228
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L228
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L231
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L231

Note that in the case of MultiSignerERC7913.sol , the return false is used to

break the execution of the loop and force an early return. Writing false to the return

variable and continuing the execution would just not work.

N-05 Missing Security Contact
Providing a specific security contact (such as an email or ENS name) within a smart contract

significantly simplifies the process for individuals to communicate if they identify a vulnerability

in the code. This practice is quite beneficial as it permits the code owners to dictate the

communication channel for vulnerability disclosure, eliminating the risk of miscommunication

or failure to report due to a lack of knowledge on how to do so. In addition, if the contract

incorporates third-party libraries and a bug surfaces in those, it becomes easier for their

maintainers to contact the appropriate person about the problem and provide mitigation

instructions.

Throughout the codebase, multiple instances of contracts missing a security contact were

identified:

The ERC7821 abstract contract

The GovernorNoncesKeyed abstract contract

The IERC7913SignatureVerifier interface

The IERC7821 interface

The Blockhash library

The MultiSignerERC7913 abstract contract

The MultiSignerERC7913Weighted abstract contract

The SignerERC7913 abstract contract

Consider adding a NatSpec comment containing a security contact above each contract

definition. Using the @custom:security-contact convention is recommended as it has

been adopted by the OpenZeppelin Wizard and the ethereum-lists.

Update: Acknowledged, not resolved. The team stated:

This is not what the security contact comment is designed for.

The security contact is something deployers / and users add to there code so that we

(OZ) know how to contact them in case we ever identify their contract as vulnerable.

When we identify issues with our code, we scan the chain for affected instances. For

each instance, we want to be able to notify the admin (to tell them to pause/upgrade/...)

•

•

•

•

•

•

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 19

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/governance/extensions/GovernorNoncesKeyed.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/draft-IERC7821.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/Blockhash.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/Blockhash.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913Weighted.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/SignerERC7913.sol
https://wizard.openzeppelin.com/
https://github.com/ethereum-lists/contracts#tracking-new-deployments

of these apps. It's a way for people that import our code to get notification from us if

there is an issue.

In those circumstances, we don't want to end up with "contact openzeppelin".

N-06 Lack of Indexed Event Parameter
Within MultiSignerERC7913.sol , the ERC7913ThresholdSet event does not have

indexed parameters.

To improve the ability of off-chain services to search and filter for specific events, consider

indexing event parameters.

Update: Acknowledged, not resolved. The team stated:

Indexing a parameter is expensive, and is useful only in specific circumstances.

For example, in ERC20 transfer, indexing the from and to address is great for someone

to easily filter through a large number of event, figuring the transfers that affect a

particular account he/she is interested in. On the other hand, the value is not indexed,

because there the cost is not really worth it as we don't expect anyone to say "I want all

events that have this exact amount transfered, regardless of the sender and receiver".

In the case of MultiSignerERC7913, we imagine that someone may want to listen to all

the threshold updates, but we don't imagine that person would really want to filter these

by value. It would mean "I want to know about threshold updates that set the value to X,

but I don't care about threshold updates to any other values"

N-07 File and Contract Names Mismatch
The IERC7913.sol file name does not match the IERC7913SignatureVerifier

contract name.

To make the codebase easier to understand for developers and reviewers, consider renaming

files to match the contract names.

Update: Acknowledged, not resolved. The team stated:

With a few historical exceptions (that we keep for backward compatibility), the files in

the interface folder usually refer to the ERC that standardize the interfaces. For example,

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 20

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L58
https://solidity.readthedocs.io/en/latest/contracts.html#events
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/interfaces/IERC7913.sol

IERC4337 is only one file even though it defines many interfaces (none of which are

names IERC4337). The same is true of IERC7579.sol.

Similarly IERC6909.sol defines multiple interfaces that fall in the scope or ERC-6909.

For ERC-7913, we feel that, just like for ERC-7579:

- the name of the file should only reflect the ERC name (like most other files in the

folder)

- the name of the contract has to be a bit more explicit as to what it does.

N-08 Custom Errors in require Statements
Since Solidity version 0.8.26 , custom error support has been added to require

statements. Initially, this feature was only available through the IR pipeline. However, Solidity

0.8.27 extended support to the legacy pipeline as well.

The draft-ERC7821.sol contains multiple instances of if-revert statements that could

be replaced with require statements:

The if (!_erc7821AuthorizedExecutor(msg.sender, mode,

executionData)) revert Account.AccountUnauthorized(msg.sender)

statement

The if (!supportsExecutionMode(mode)) revert

UnsupportedExecutionMode() statement

For conciseness and gas savings, consider replacing if-revert statements with require

statements.

Update: Acknowledged, not resolved. The team stated:

using require(consition, customError(args)); may be more readable than

if(!condition) revert customError(args); but it is actually more expensive.

The reason is that in the case of the if, the custom error code (with the argument) is only

encoded if the condition is not met. Using the require forces the custom error to always

be encoded, even if its not going to be emitted.

While we sometimes do use the new require format, it is not a requirement of our

guidelines. We also feel it's sometimes better to leave more room to the user and have a

more relaxed pragma.

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 21

https://soliditylang.org/blog/2024/05/21/solidity-0.8.26-release-announcement/
https://soliditylang.org/blog/2024/05/21/solidity-0.8.26-release-announcement/
https://soliditylang.org/blog/2024/09/04/solidity-0.8.27-release-announcement/
https://soliditylang.org/blog/2024/09/04/solidity-0.8.27-release-announcement/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L30-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L30-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L30-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L30-L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/./contracts/account/extensions/draft-ERC7821.sol#L32

I don't think the arguments in favor of require are strong enough to justify this change as

a fix.

N-09 Documentation Improvements
Throughout the codebase, multiple opportunities for improving the documentation were

identified:

The name of the _validateThreshold function suggests that the value of the

multisig _threshold is validated. However, what is being validated is whether the

number of collected signatures meets the threshold. Consider renaming the function to

better reflect its purpose. Some suggestions would be

_validateNumberOfSignatures or _validateSufficientSignatures .

In the _validateVoteSig function, an invalid keyed nonce signature will be validated

a second time as well in the standard nonce scenario, which may seem redundant.

However, this redundancy is well-motivated though due to the following reasons:

On the one hand, the library must support both standard and keyed nonce

signatures, while on the other, it has no way of knowing which of the two is

supported by the client. Therefore, both scenarios must be checked.

In the case of keyed nonces, the nonce is explicitly incremented only for valid

signatures. In contrast, standard nonces are always incremented, regardless of

whether the signature is valid or not. Therefore, by falling back to the standard

nonce scenario for invalid keyed nonce signatures, an implicit increase of the

nonce is forced even for invalid keyed nonce signatures. This is also a reason why

the order in which standard vs. keyed nonce signatures are checked is important

and should not be switched.

Consider documenting the specifics of the above-discussed behavior.

In the ERC-7913 multisig setting, there may be cases in which a _removeSigners

operation must be preceded by a respective threshold readjustment via

_setThreshold . Indeed, consider a scenario of 10 signers with a threshold of 5 and a

need to remove 6 signers. If the threshold is not readjusted first (to a value at most 4), the

call to _removeSigners will revert due to the original threshold (5) being unreachable

for 4 signers.

However, the threshold must be lowered and the signers removed in the same

transaction. Otherwise, a group of to-be-removed signers could take advantage of the

1.

2.

◦

◦

3.

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 22

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L238
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L238
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L239
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L33-L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/Governor.sol#L572
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L129

lowered threshold to approve a transaction before they are removed. Not having a

combined "lower threshold and remove signers" function is a very reasonable design

choice and improves modularity of the code. Yet, extra care should be exercised so that

whoever imports the library does not make mistakes in using it. Consider documenting

the fact that the threshold must be lowered, then the signers removed, in that order, in

the same transaction.

In MultiSignerERC7913.sol , the documentation for _validateSignatures

states that "The signatures arrays must be at least as large as the signers arrays. Panics

otherwise." However, _validateSignatures calls

areValidSignaturesNow(signers, signatures) , which returns false if

signers.length != signatures.length . Consider amending this comment to

state that the two arrays must be equal in length.

In EnumerableSet.sol and EnumerableMap.sol , new structs (StringSet ,

BytesSet , and BytesToBytesMap) have been added that represent sets and

mappings of elements of variable length. The documentation for the add , remove ,

contains , and at methods for StringSet and BytesSet , and the documentation

for the set , remove , contains , at , tryGet , and get methods of

BytesToBytesMap , describe these as O(1) operations. This is correct when there is a

uniform upper bound on the length of the elements in the set.

If the element lengths grow asymptotically with the size of the set, the time bound is

O(m), where m is the length of the element being added, removed, or queried. This is

true for queries and removals instead of just additions, because the input element must

be read and hashed to find its position in the _positions mapping. Similarly, the time

bound on previously O(n) operations values and clear of StringSet , BytesSet ,

and BytesToBytesMap is O(mn) instead of O(n). Consider checking the time bounds

and updating the documentation for enumerable sets and mappings with variable length

elements.

In EnumerableSet.sol , the warning is a run-on sentence. For clarity, consider

breaking this into multiple sentences and updating each instance of this warning

accordingly.

In the _validateVoteSig and _validateExtendedVoteSig functions, the key for the nonce is

derived by casting (resp. here) the proposalId to a uint192 using

uint192(proposalId) . In Solidity, this operation retains the lower 192 bits.

According to the documentation, the key corresponds to the "first 192 bits" of the

proposalId , which may be ambiguous and may potentially be interpreted as the

4.

5.

6.

7.

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 23

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L219
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L219
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L522
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L522
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L540
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L540
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L591
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L591
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L612
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L612
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1200
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1210
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1210
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1232
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1232
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1253
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1253
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1265
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1265
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1280
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1280
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L624
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L624
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L580
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L580
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableSet.sol#L129-L130
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/governance/extensions/GovernorNoncesKeyed.sol#L11

higher-order bits rather than the lower-order bits. The ambiguity could lead to nonce

collisions or unintended replay vulnerabilities if the proposalId exceeds 192 bits,

because the intended high-order bits (which carry different significance) are ignored.

Consider editing the documentation to state "low-order" bits and preferably giving an

example.

Consider improving the documentation as per the aforementioned recommendations.

Update: Partially resolved in pull request #5779. The team stated:

Some of the recommendations are addressed in the linked PR. We however decided to

not address everything raise here.

On _validateThreshold naming: Generic function names are appropriate in

abstract library contexts where the validation logic is meant to be overridden. The name

describes the contract (threshold validation) rather than the implementation detail

(signature counting). I'd suggest keeping it as is.

On _validateVoteSig redundancy: The "redundant" validation is intentional

architectural design. It enables graceful degradation from keyed nonces to standard

nonces, allowing incremental adoption without breaking existing integrations. This

provides better UX than requiring explicit mode selection. I'd say we keep it as is.

On Internal API documentation level: Internal functions like _setThreshold and

_removeSigners are building blocks for smart contract developers extending

OpenZeppelin contracts, not end-user APIs. These developers create public wrapper

functions that combine internal calls correctly and will undergo security audits

regardless of documentation completeness. I'd say adding implementation guidance to

internal functions doesn't add much value and is not an immediate security concern.

On Time complexity as O(1): I would argue that the noted complexity still describes the

correct relationship between the set size and the operation cost. In short, assuming

constant size of the data inserted, then then it's correct to indicate O(1).

N-10 Typographical Errors
Throughout the codebase, multiple instances of typographical errors were identified:

Here, "Returns whether whether" should be "Returns whether".

Here, "Return the an array containing a slice of the keys" should be "Returns an array

containing a slice of the keys". Also here and possibly at other places.

•

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Notes & Additional
Information − 24

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5779
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L212
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L298
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a60baa22c69aa2d77c760fd9ad77d997df516847/contracts/utils/structs/EnumerableMap.sol#L1160

Here, "Tries to returns the value associated with key ." should be "Tries to return the

value associated with key ". Also here and possibly at other places.

Consider fixing all occurrences of typographical errors to improve code clarity and avoid

misinterpretation.

Update: Resolved in pull request #5777 at commit e1277f7.

N-11 Missing immediate Parameter in canCall
Function
In IAccessManager.sol , in the comment to the canCall function, the documentation

refers to an immediate parameter that should allow bypassing the delay when set to true.

However, the function signature only includes the parameters caller , target and

selector . This discrepancy between the documentation and the actual function signature

could lead to confusion about how the function is expected to behave and indicates a potential

logical inconsistency.

Consider fixing the documentation or the implementation, so the two are consistent.

Update: Resolved in pull request #5795.

Client Reported

CR-01 Allowing Zero Threshold in ERC-7913
Multisigner
The _setThreshold function sets the value for the signature _threshold . However, there

is no check enforcing the threshold to be non-zero. With a threshold of zero,

_validateThreshold will always return true regardless of the number of signers. The risk

is mitigated during signature verification in _rawSignatureValidation which forces the

number of signatures to be non-zero and consequently calls _validateSignatures on at

least one signature. In addition, the risk is further minimized by the fact that the value of

threshold can only be set during through the internal function _setThreshold .

As a result of the aforementioned mitigating factors, there is little risk of any practical attack.

However, having a zero threshold effectively defeats the purpose of any multisig scheme.

•

OpenZeppelin Contracts Release v5.4 Diff Audit − Client Reported − 25

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L1262
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/structs/EnumerableMap.sol#L139
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5777
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/e1277f7ad295b5042849ad09169329663511e230
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/access/manager/IAccessManager.sol#L100
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/access/manager/IAccessManager.sol#L110
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/access/manager/IAccessManager.sol#L110
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5795
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L239
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L201
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L201
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L205
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L207
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/cryptography/signers/MultiSignerERC7913.sol#L143

Therefore, consider enforcing the value of the threshold to be strictly larger than zero.

Alternatively, consider documenting this behavior.

Update: Resolved in pull request #5772 at commit d7930da.

CR-02 Out-of-bound Memory Read in
Bytes.lastIndexOf
In Bytes.sol the lastIndexOf function on input a buffer buffer , byte value s and position

pos searches for the first occurrence of s in buffer , starting from index pos (inclusive)

and proceeding backwards down to index 0 . If the byte s is found, its index is returned or

type(uint256).max , otherwise.

However the function blindly accepts empty buffer as input (buffer.length == 0) without

any boundary checks. If an empty buffer is passed and if pos is not type(uint256).max =

2^256 - 1 , during the computation of Math.min(pos, length - 1) + 1 in the for-

loop, length - 1 overflows and returns length - 1 = 0 - 1 = -1 = 2^256 - 1 .

Taking the minimum between pos and 2^256-1 in the min function of the same expression

returns a value less than 2^256 - 1 . Adding 1 to it next returns a non-zero value.

Consequently, the loop starts at a non-zero index i and tries to access data out of bounds

(since the buffer is empty).

The above results in unpredictable behavior. For example, if the memory before pos is clean

(initialized to zero) a call to lastIndexOf('0x', '0x00', 17) will return 17 instead of

the expected type(uint256).max . Indeed since the buffer is empty and the memory

contains zeros (by assumption), the first encountered zero will be at position 17 , which is also

equal to the target value s=0x00 .

Consider adding a check for the case in which buffer.length == 0 and pos !=

type(uint256).max and return type(uint256).max (symbol not found) if both

conditions hold.

Update: Resolved in pull request #5797.

OpenZeppelin Contracts Release v5.4 Diff Audit − Client Reported − 26

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5772
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/d7930daa4839eef439c92e247cf2fd3cc7261b21
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Bytes.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Bytes.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Bytes.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Bytes.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f6fea85717b1a09300c7a783554696a0d6f3df12/contracts/utils/Bytes.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5797

Conclusion
The v5.4 release of OpenZeppelin Contracts library introduces support for ERC-7913,

ERC-7821, and EIP-2935, a keyed-nonces extension to the governance module,

enhancements to the enumerable map and set libraries, and porting of several contracts from

the Community Contracts repository, among other minor updates. This improves the versatility

of the library and addresses user needs dictated by the latest standards.

The code quality is of a high standard, with multiple safety mechanisms in place to prevent

malicious use, unintentional or otherwise. It is also accompanied by detailed documentation

and usage instructions. Several low-severity issues were reported, along with multiple notes

recommending various improvements.

The OpenZeppelin Contracts team is commended for the high quality of their work and is

appreciated for their active engagement throughout the audit in addressing all the questions

posed by the audit team promptly and in great detail.

OpenZeppelin Contracts Release v5.4 Diff Audit − Conclusion − 27

	OpenZeppelin Contracts Release v5.4 Diff Audit
	Table of Contents
	Summary
	Scope
	System Overview
	ERC-7913 (Signatures by Address-Less Keys)
	ERC-7821 (Batch Executor Interface)
	EIP-2935 (Access to Historical Block Hashes)
	Keyed Nonces
	Enhancements to EnumerableMap and EnumerableSet
	Ports from Community Contracts
	Trivial Modifications

	Security Model and Trust Assumptions
	Low Severity
	Possible Overflow when Computing the Total Weight of ERC-7913 Multisigners
	_setSignerWeights Does Not Check if the Weight Has Changed
	Name for Elements in Set Struct is Potentially Confusing
	Missing External Call Failure Check
	Variable Names Too Similar
	Incomplete Docstrings
	Possible Duplicate Event Emission
	Different Pragma Directives

	Notes & Additional Information
	Minor Inconsistencies in the Implementations of Map and Set
	Inner Mapping Only Has One Named Parameter
	Functions Updating State Without Event Emissions
	Redundant return Statements
	Missing Security Contact
	Lack of Indexed Event Parameter
	File and Contract Names Mismatch
	Custom Errors in require Statements
	Documentation Improvements
	Typographical Errors
	Missing immediate Parameter in canCall Function

	Client Reported
	Allowing Zero Threshold in ERC-7913 Multisigner
	Out-of-bound Memory Read in Bytes.lastIndexOf

	Conclusion

