
OpenZeppelin
Contracts
Release v5.3 Diff
Audit

| security

April 3, 2025

Table of Contents
Table of Contents __    2

Summary ___    3

Scope __    4

System Overview __    6
ERC-6909 6

Governance 6

Utilities 6

Security Model and Trust Assumptions ___    7
Privileged Roles 7

Low Severity __    8
L-01 canCallWithDelay Change Not Functionally Equal 8

L-02 ERC-6909 Total Supply Assumption Can Be Overridden 8

L-03 Missing and Misleading Documentation 9

Notes & Additional Information __    10
N-01 Typography Errors 10

N-02 escapeJSON Escapes All Unicode Characters 10

Conclusion __    12

OpenZeppelin Contracts Release v5.3 Diff Audit − Table of Contents − 2

Type Library

Timeline From 2025-03-03
To 2025-03-12

Languages Solidity

Total Issues 5 (3 resolved, 1 partially resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

0 (0 resolved)

Low Severity Issues 3 (1 resolved, 1 partially resolved)

Notes & Additional
Information

2 (2 resolved)

Summary

OpenZeppelin Contracts Release v5.3 Diff Audit − Summary − 3

Scope
We audited the OpenZeppelin/openzeppelin-contracts repository at commit d4b2e98. This

commit was diffed against commit acd4ff7 and all new files were fully audited. In scope were

the following files:

contracts
├── access/manager/AuthorityUtils.sol
├── account/utils/draft-ERC4337Utils.sol
├── governance
│ ├── Governor.sol
│ ├── IGovernor.sol
│ └── extensions
│ ├── GovernorProposalGuardian.sol
│ ├── GovernorSequentialProposalId.sol
│ ├── GovernorSuperQuorum.sol
│ ├── GovernorVotesQuorumFraction.sol
│ └── GovernorVotesSuperQuorumFraction.sol
├── interfaces/draft-IERC6909.sol
├── metatx/ERC2771Forwarder.sol
├── proxy/utils/Initializable.sol
├── token
│ ├── ERC20/extensions/ERC4626.sol
│ ├── ERC20/utils/SafeERC20.sol
│ └── ERC6909
│ ├── draft-ERC6909.sol
│ └── extensions
│ ├── draft-ERC6909ContentURI.sol
│ ├── draft-ERC6909Metadata.sol
│ └── draft-ERC6909TokenSupply.sol
└── utils
 ├── Calldata.sol
 ├── Pausable.sol
 ├── Strings.sol
 ├── cryptography
 │ ├── Hashes.sol
 │ └── MessageHashUtils.sol
 ├── math/Math.sol
 └── structs
 ├── EnumerableMap.sol
 ├── EnumerableSet.sol
 └── MerkleTree.sol

OpenZeppelin Contracts Release v5.3 Diff Audit − Scope − 4

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/d4b2e98c737f54a21961b39d6bba13b839f3b6f4
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/acd4ff74de833399287ed6b31b4debf6b2b35527

Update: All resolutions and the final state of the audited codebase mentioned in this report are

contained at commit f3f0a64 on branch release-v5.3. In addition to the fixes identified in this

report, this commit also includes the following changes:

Fix to signature verification in P256.sol introduced at version 5.1.0 due to RIP-7212

specifications for non-existent precompiles.

Minor codebase changes introduced via PR5605 related to addition of Entrypoint v0.8.

Please note that changes introduced to contracts not in-scope for this audit were not part of

the additional reviews.

•

•

OpenZeppelin Contracts Release v5.3 Diff Audit − Scope − 5

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/f3f0a6466f2be4f8b2d73c97cec0fa6e37763ec0
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/release-v5.3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/P256.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v5.1.0
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5605

System Overview
Version 5.3 of the OpenZeppelin Contracts library introduces new features, including support

for ERC-6909, optional enhancements for governance, and updated functionality for certain

utilities.

ERC-6909
The ERC-6909 standard strives to create a minimal specification for multi-token contracts,

which removes some of the features of ERC-1155. Specifically, callbacks and batching have

been removed from the interface. This new release follows the ERC specification to provide

developers with the fundamental smart contracts necessary for this standard, as an alternative

to the more complex ERC-1155.

Governance
This release introduces new governance features, including the ability to add guardians, track

proposal IDs sequentially, and implement a super quorum. The first feature allows for the

addition of a guardian, which is a privileged entity that can cancel proposals at any time. The

second feature is the introduction of a sequential proposal ID system, which includes a new

helper function that assists with the transition from a hash-based proposal identification

system to a sequential one. Lastly, the super quorum feature allows proposals with sufficient

"for" votes to bypass the waiting period and move directly to the "succeeded" state. These

features have been implemented in new contracts that inherit from the existing governance

ones.

Utilities
In this release, changes have been made to three libraries: EnumerableMap ,

EnumerableSet , and MerkleTree . For the first two, functionality to clear the existing data

structure was added. Furthermore, a new struct named Bytes32x2Set was added in order

to store tuples of values. For the Merkle tree, update functionality was added so that the caller

can update a leaf of the Merkle tree.

OpenZeppelin Contracts Release v5.3 Diff Audit − System Overview − 6

https://eips.ethereum.org/EIPS/eip-6909

Security Model and Trust
Assumptions
Auditing libraries requires a shift in focus due to their composability within blockchain

protocols. While the scope of an audit is typically limited to the code itself, the scope expands

when it comes to libraries because of their potential internal and external integrations. Libraries

act as foundational components for many protocols. This means that their security is

influenced not just by their internal robustness, but also by how they are utilized by integrators.

As a result, ensuring a library's security involves reviewing the code as well as anticipating its

various use cases and integration scenarios.

In addition to the above, the complexity grows because, while a library must accommodate a

wide range of potential use cases, the responsibility for secure implementation often falls on

developers who integrate it into their projects. These developers must carefully review the

security considerations when extending contracts from the library. A library's security risks can

multiply depending on how well developers understand and utilize its contracts. Therefore,

extra care is necessary to identify and address all potential threats, both direct and indirect, or

to document them so that developers are fully aware of the associated security risks.

Privileged Roles
With the introduction of the GovernorProposalGuardian governance extension, a new

guardian role has been added. As outlined in the System Overview section, this role can cancel

a proposal in any state if it has not been executed, expired, or canceled already. However, if

the guardian is not set, this privilege is passed to the person who made the proposal that is

being canceled. Note that without this extension, the proposer can only cancel their proposal

during the "pending" state.

OpenZeppelin Contracts Release v5.3 Diff Audit − Security Model and Trust
Assumptions − 7

https://docs.openzeppelin.com/contracts/5.x/extending-contracts#security

Low Severity

L-01 canCallWithDelay Change Not Functionally
Equal
The canCallWithDelay function of the AuthorityUtils library helps call canCall on

an authority address, and can handle both a (bool) and (bool, uint32) response.

The 5.3 release introduced a code change in how the response is decoded. Previously, the

call's return data was abi.decode d depending on the data length. This causes reverts if the

second value exceeds the uint32 size.

In the new version, the return values are simply cast to their expected type. This means that a

value exceeding the uint32 size would wrap around to a value modulo and not revert.

This wrapped uint32 value, which represents the delay of a call, could then cause

unintended behavior in AccessManaged contracts.

Consider checking the return size of the uint32 value before casting to enforce the expected

interface and to be consistent with the behavior of the previous version.

Update: Resolved in pull request #5584 at commit d1efb23. The Solidity Contracts team

stated:

The fix is not going back to the previous behavior (that reverted) but instead making sure

that the modulo cannot cause a high delay to be interpreted as a small delay. We

changed it so that if the value does not fit in a uint32, then we use a 0 delay. This as the

effect of disabling any delay that is not a uint32.

L-02 ERC-6909 Total Supply Assumption Can Be
Overridden
The ERC-6909 total supply extension assumes the following to perform an unchecked total

supply decrement when burning a token:

amount <= _balances[id][from] <= _totalSupplies[id]

2322^{32}232

OpenZeppelin Contracts Release v5.3 Diff Audit − Low Severity − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/access/manager/AuthorityUtils.sol#L14
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/access/manager/AuthorityUtils.sol#L14
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584/commits/d1efb2372c069dadd33b8b53c606ad38cf3935c2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/extensions/draft-ERC6909TokenSupply.sol#L29

This assumption is enforced in the base contract by reverting with the

ERC6909InsufficientBalance error if the amount exceeds the from address balance.

Furthermore, the total supply per ID is incremented on each mint such that the total supply

must be at least equal or larger than any of the users' balances. However, a custom token can

potentially override the _update logic such that this assumption no longer holds. This could

lead to the total supply underflowing upon a burn.

Consider removing the unchecked block around the total supply decrement on burn.

Update: Acknowledged, not resolved. The Solidity Contracts team stated:

This behavior is simmilar to the one we have in ERC1155 and ERC1155Supply .

While an overriden version of _update could selectivelly execute ERC6909._update

and ERC6909TokenSupply._update to try to create an inconsistency, we beleive

this is unlikelly to happen in real usage of the contract.

In this case we prefer optimizing gas usage of the huge majority of "clean" inheritance

(including overrides that simply call super._update as we recomand in our good

practices). Complex (and malicious) overrides fall under the responsability of the

developper.

L-03 Missing and Misleading Documentation
Throughout the codebase, multiple instances of misleading comments were identified:

Both the approve function in draft-ERC6909.sol and the corresponding interface

lack documentation on how to make infinite approvals, which is to set the allowance to

type(uint256).max .

The docstring on the _transfer function in draft-ERC6909.sol is contradictory as

it first suggests an override, but later states that _update should be overridden for

custom functionality instead.

The ERC-6909 spec does not specify whether allowance should be consumed despite

the operator status. The implementation is opinionated by not consuming the allowance

for operators, which could be documented.

In GovernorVotesSuperQuorumFraction.sol , it is not explicitly mentioned that

only "for" votes count towards the super quorum. While this is mentioned in the

GovernorSuperQuorum parent contract, consider explicitly mentioning this in

GovernorVotesSuperQuorumFraction as well for clarity.

•

•

•

•

OpenZeppelin Contracts Release v5.3 Diff Audit − Low Severity − 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L141-L144
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L47-L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L47-L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L47-L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/interfaces/draft-IERC6909.sol#L51-L56
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L98-L103
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L98-L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L103
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/draft-ERC6909.sol#L103
https://eips.ethereum.org/EIPS/eip-6909#approvals-and-operators
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/interfaces/draft-IERC6909.sol#L72-L77
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/governance/extensions/GovernorVotesSuperQuorumFraction.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/governance/extensions/GovernorVotesSuperQuorumFraction.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/governance/extensions/GovernorSuperQuorum.sol#L15-L17
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/governance/extensions/GovernorSuperQuorum.sol#L15-L17

The comment in line 29 of draft-ERC6909TokenSupply.sol states "_balances[id]

[from]", but it should be changed to state "_balances[from][id]".

Consider adding comments and revising the aforementioned ones to improve consistency and

more accurately reflect the implemented logic, making it easier for auditors and other parties

examining the code to understand what each section of code is designed to do.

Update: Partially resolved in pull request #5584 at commit 803dff6. Bullet point 3 regarding

additional ERC-6909 allowance documentation was not addressed.

Notes & Additional
Information

N-01 Typography Errors
Throughout the codebase, multiple instances of typography errors were identified:

The documentation of the Bytes32x2Set struct and functions refers to itself as "in the

self" [1, 2, 3], "to a self", "from a self", and "on the self". Consider removing "a" or "the",

or changing "self" to "set".

The comment in line 181 of MerkleTree.sol states "for the leaf being update".

Consider changing it to "for the leaf being updated".

Consider correcting the above typographical errors to improve the clarity and readability of the

codebase.

Update: Resolved in pull request #5584 at commit 24ee8a6 as well as commit bfdbb67. The

Solidity Contracts team stated:

Bytes32x2Set was removed in commit bfdbb67.

N-02 escapeJSON Escapes All Unicode
Characters
In order to prevent JSON injection, the escapeJSON function of the Strings library takes a

JSON string as the input to then escape certain characters (e.g., in NFT metadata). Thus,

•

•

•

OpenZeppelin Contracts Release v5.3 Diff Audit − Notes & Additional
Information − 10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/extensions/draft-ERC6909TokenSupply.sol#L29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/token/ERC6909/extensions/draft-ERC6909TokenSupply.sol#L29
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584/commits/803dff6a8f8d4e3d283087144702109ae6b0665e
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L428
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L510
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L524
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L433
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L451
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/EnumerableSet.sol#L517
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/structs/MerkleTree.sol#L181
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584/commits/24ee8a68468e26124aca2ba1dc29c0d5ef7a8ee0
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/bfdbb67ebcf1447d6e4c31644511c8af2b4ac188
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/bfdbb67ebcf1447d6e4c31644511c8af2b4ac188
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/Strings.sol#L442
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/Strings.sol#L442

control characters, backslashes, and quotation marks are escaped by prepending a backslash.

This prevents breaking out of the value's string context and adding additional key-value pairs

of the JSON object.

Regarding Unicode characters specifically, defined as \uXXXX (where XXXX is a 2-byte

hexadecimal value), section 2.5 of RFC-4627 requires escaping for specific ranges:

Control Characters: U+0000 to U+001F

Quotation Marks: U+0022

Backslash ("reverse solidus"): U+005C

The escapeJSON function does not handle these cases separately but instead escapes all

backslashes and, therefore, also all Unicode characters. This behavior, while compliant with

the spec, can be inconvenient for front-end applications that rely on native Unicode

representations. Extra escaping forces these systems to perform additional decoding steps,

which can lead to rendering inconsistencies or increased processing overhead. In contexts

where precise handling and display of Unicode characters are critical - such as in languages

that require specific symbols - the automatic doubling of backslashes may introduce

challenges for correct interpretation and localization.

While the existing approach is secure, consider relaxing the escape rule by not escaping

Unicode characters for the allowed ranges. Alternatively, consider documenting this escape

rule in the codebase for improved clarity.

Update: Resolved in pull request #5584 at commit 02a6c25. The Solidity Contracts team

decided to add a comment about this behavior.

•

•

•

OpenZeppelin Contracts Release v5.3 Diff Audit − Notes & Additional
Information − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4b2e98c737f54a21961b39d6bba13b839f3b6f4/contracts/utils/Strings.sol#L18-L25
https://www.ietf.org/rfc/rfc4627.txt
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5584/commits/02a6c257155752c657c38b99c39e58b15d01ff19

Conclusion
The v5.3 release of OpenZeppelin Contracts introduces support for ERC-6909, optional

enhancements for governance, and updated functionality for certain utilities. We commend the

Solidity Contracts team for addressing user needs by incorporating new standards, enhancing

existing features, and adding new utilities.

During the audit, particular care was taken to document edge cases, ensuring that integrators

are informed of potential risks when interacting with these contracts. Such efforts aim to create

a more resilient codebase, recognizing the library’s critical role as a foundational component

within the blockchain ecosystem. The Contracts team has demonstrated a strong commitment

to maximizing the library's security, and we are glad to have collaborated with them on this

milestone.

OpenZeppelin Contracts Release v5.3 Diff Audit − Conclusion − 12

	OpenZeppelin Contracts Release v5.3 Diff Audit
	Table of Contents
	Summary
	Scope
	System Overview
	ERC-6909
	Governance
	Utilities

	Security Model and Trust Assumptions
	Privileged Roles

	Low Severity
	canCallWithDelay Change Not Functionally Equal
	ERC-6909 Total Supply Assumption Can Be Overridden
	Missing and Misleading Documentation

	Notes & Additional Information
	Typography Errors
	escapeJSON Escapes All Unicode Characters

	Conclusion

