
Contracts 5.0

Release

| security

October 3, 2023

Table of Contents

Table of Contents    __    2

Summary    ___    5

Scope    __    6

Overview    ___    10

Security Considerations and Threat Model    __    13

High Severity    __    15

H-01 Potential Inaccuracies in Voting Unit Accounting When Overriding the ERC20Votes#_getVotingUnits Function's

Formula 15

H-02 Non-Compliance of ERC2771Context With ERC Could Lead to Incorrect Address Extraction 16

H-03 Risk of Failed L2 and Sidechain Deployments with Solidity Version 0.8.20 17

Medium Severity    ___    18

M-01 Potential Reentrancy in ERC1155._update Function 18

M-02 Unhandled Silent Failures 19

M-03 Lack of Context Usage 20

M-04 Tokens Might Get Stuck in the Contract - Phase 1 20

M-05 ERC2771Forwarder May Call Receiver Without Appending Sender's Address 21

M-06 Immutable Beneficiary Security Risks and Potential Loss of Funds 22

M-07 Unnecessarily Complex and Limited Design of customRevert Callback 23

M-08 State Updated in Modifiers May Be Corrupted 25

M-09 Function withUpdateAt Does Not Behave as Expected 25

M-10 Proposal Execution Could Fail Due to Zero-Delayed AccessManaged Targets 26

M-11 Contradictory _cancel Behavior 27

Low Severity    __    28

L-01 Potentially Incorrect maxFlashLoan Amount When Using ERC20FlashMint And ERC20Capped Together 28

L-02 Context Contract Is Not Used 29

L-03 ERC2771Forwarder Must Not Hold Token Approvals 30

L-04 Error-prone Failure Semantics of verify in ERC2771Forwarder 30

L-05 Inconsistent Solidity Version Used in ERC1967Utils 31

L-06 Lack of Access Control and Flexibility in VestingWallet's Release Methods 31

L-07 Potentially Trapped ETH in ERC2771Forwarder 32

L-08 Reentrancy Risk in ERC1967Utils._setBeacon 33

L-09 Risk of Division by Zero in VestingWallet 33

L-10 Risk of Ownership Loss Due to Single-Step Ownership Transfer in UpgradeableBeacon and ProxyAdmin 34

L-11 ERC-165 Check Is Too Permissive 34

L-12 address(0) Is Allowed as the Initial Owner 35

Contracts 5.0 Release − Table of Contents − 2

L-13 Enumeration Methods Are Unnecessarily Limited 35

L-14 Proposal Front-Running Protection Fails Silently 36

L-15 TimelockController Allows Sending ETH by Default 36

L-16 Unintuitive and Inconsistent Proposal State Timing 37

L-17 Overloaded Error Messages 37

Notes & Additional Information    __    38

N-01 Allowances And Approval Inconsistencies - Phase 1 38

N-02 Gas Optimization - Phase 1 38

N-03 Contracts Are Not abstract 39

N-04 EIP-3156 Inconsistency 39

N-05 Missing Interface 40

N-06 Missing Or Incorrect Docstrings - Phase 1 40

N-07 Naming Suggestions - Phase 1 42

N-08 Outdated Solidity Version 42

N-09 Uncommented Sensitive Operation 42

N-10 Unused Custom Errors 43

N-11 Unused or Duplicated Imports And Extensions - Phase 1 43

N-12 Outdated Version in Docstrings 44

N-13 Event Definition Improvement Suggestions 44

N-14 Code Style Suggestions - Phase 1 44

N-15 Inadequate Documentation for Reverting Payable Upgrades with Empty Data 45

N-16 Incompatibility of VestingWallet with Rebasing Tokens 46

N-17 Lack of Event Emission - Phase 2 47

N-18 Lack of Inclusion of a "Vesting Cliff" Feature 47

N-19 Missing Or Incorrect Docstrings - Phase 2 48

N-20 Naming Suggestions - Phase 2 50

N-21 Trusted Forwarder Address Lacks External Visibility 50

N-22 Unused Named Return Variables - Phase 2 51

N-23 Code Style Suggestions - Phase 3 51

N-24 Some ERC-721 Features Might Be Atomically Reset 52

N-25 Missing or Incorrect Docstrings - Phase 3 52

N-26 Lack of Event Emission - Phase 3 53

N-27 Repeated Code 54

N-28 Hardcoded Magic Constant 54

N-29 _setTokenURI Does Not Allow Setting URI for Non-Existing Tokens 54

N-30 Default Handling Contract of the DEFAULT_ADMIN_ROLE Is Complex 55

N-31 Unused Named Return Variables - Phase 3 55

N-32 Allowance and Approval Inconsistencies - Phase 3 56

N-33 Confusing Revert Messages Due to Underflow 56

N-34 Missing or Incorrect Docstrings - Phase 4 57

N-35 Refactor AccessManager Data Structures to Reduce Design Complexity 59

N-36 Unused Variables 59

N-37 Inconsistent Use of Named Return Variables - Phase 4 60

N-38 Missing Zero Address Check in AccessManager Constructor 60

N-39 Use of Custom Errors 60

N-40 Code Style Suggestions - Phase 4 61

N-41 TODO Comments 61

Contracts 5.0 Release − Table of Contents − 3

N-42 Gas Optimization - Phase 4 62

N-43 Typographical Errors - Phase 4 62

N-44 Mismatch Between Contract and Interface 63

N-45 Naming Suggestions - Phase 4 63

N-46 Missing or Incorrect Docstrings - Phase 5 64

N-47 Gas Optimizations - Phase 5 66

N-48 Inconsistent Use of Named Return Variables - Phase 5 66

N-49 Unused Import - Phase 5 67

N-50 Inconsistent Solidity Version Used in GovernorStorage 67

N-51 Long Comment Lines 67

N-52 Unused Named Return Variables - Phase 5 67

N-53 Typographical Errors - Phase 5 68

N-54 Naming Suggestions - Phase 5 69

N-55 Extraneous Code 70

Client-Reported    ___    70

CR-01 Inconsistent Use of Hooks 70

CR-02 Wrong Visibility for a Public Constant 71

CR-03 Inconsistent nonce Enumeration in AccessManager 71

CR-04 AccessManager's onlyAuthorized Functions Cannot Be Executed Through relay() 71

Recommendations    ___    73

[R01] Features and Design Suggestions 73

[R02] Overridable Functions Risk Classification 73

[R03] Testing and Fuzzing Opportunities - Phase 1 75

[R04] Inextensible Choice of Admin Address 75

[R05] Compatibility with EVM Chains Other Than Ethereum 75

[R06] Tokens Might Get Stuck in the Contract 77

[R07] Testing and Fuzzing Opportunities - Phase 4 78

[R08] Overlapping Operation of Multiple Delay Mechanisms in AccessManager 78

Conclusion    __    80

Contracts 5.0 Release − Table of Contents − 4

Type Library

Timeline From 2023-06-05

To 2023-09-15

Languages Solidity

Total Issues 90 (49 resolved, 16 partially resolved)

Critical Severity

Issues

0 (0 resolved)

High Severity

Issues

3 (1 resolved)

Medium Severity

Issues

11 (7 resolved, 2 partially resolved)

Low Severity Issues 17 (8 resolved, 2 partially resolved)

Notes & Additional

Information

55 (29 resolved, 12 partially resolved)

Client-Reported

Issues

4 (4 resolved)

Summary

Contracts 5.0 Release − Summary − 5

Scope

Phase 1

We audited the OpenZeppelin/openzeppelin-contracts repository at commit 99a4cfc and the

following files were in scope:

contracts

├── ERC20

│ ├── ERC20.sol

│ ├── IERC20.sol

│ ├── extensions

│ │ ├── ERC20Burnable.sol

│ │ ├── ERC20Capped.sol

│ │ ├── ERC20FlashMint.sol

│ │ ├── ERC20Pausable.sol

│ │ ├── ERC20Permit.sol

│ │ ├── ERC20Votes.sol

│ │ ├── ERC20Wrapper.sol

│ │ ├── ERC4626.sol

│ │ ├── IERC20Metadata.sol

│ │ └── IERC20Permit.sol

│ └── utils

│ └── SafeERC20.sol

├── ERC1155

│ ├── ERC1155.sol

│ ├── IERC1155.sol

│ ├── IERC1155Receiver.sol

│ ├── extensions

│ │ ├── ERC1155Burnable.sol

│ │ ├── ERC1155Pausable.sol

│ │ ├── ERC1155Supply.sol

│ │ ├── ERC1155URIStorage.sol

│ │ └── IERC1155MetadataURI.sol

│ └── utils

│ ├── ERC1155Holder.sol

│ └── ERC1155Receiver.sol

└── utils

 ├── StorageSlot.sol

 └── structs

 └── Checkpoints.sol

The following contracts were audited at the 99a4cfc commit but only the changes between

versions 5.0 and 4.9 were in scope:

contracts

└── utils

 └── math

Contracts 5.0 Release − Scope − 6

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8

 ├── Safecast.sol

 └── Math.sol

Phase 2

We audited the OpenZeppelin/openzeppelin-contracts repository at commit 8fff875 and the

following files were in scope:

contracts

├── interfaces

│ ├── draft-IERC1822.sol

│ └── IERC1967.sol

├── proxy

│ ├── beacon

│ │ ├── BeaconProxy.sol

│ │ ├── IBeacon.sol

│ │ └── UpgradeableBeacon.sol

│ ├── ERC1967

│ │ ├── ERC1967Proxy.sol

│ │ └── ERC1967Utils.sol

│ ├── Proxy.sol

│ ├── transparent

│ │ ├── ProxyAdmin.sol

│ │ └── TransparentUpgradeableProxy.sol

│ └── utils

│ └── UUPSUpgradeable.sol

├── metatx

│ ├── ERC2771Context.sol

│ └── ERC2771Forwarder.sol

├── finance

│ └── VestingWallet.sol

└── utils

 ├── Address.sol

 ├── Context.sol

 ├── cryptography

 │ └── EIP712.sol

 └── Strings.sol

Phase 3

We audited the OpenZeppelin/openzeppelin-contracts repository at commit b027c35 and the

following files were in scope:

contracts

├── access

│ ├── AccessControl.sol

│ ├── AccessControlDefaultAdminRules.sol

│ ├── AccessControlEnumerable.sol

│ ├── Ownable.sol

│ └── Ownable2Step.sol

├── proxy

Contracts 5.0 Release − Scope − 7

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/8fff875589443c607ac4ef2d201a6d8bec5a43c8
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/b027c3541c03348767b62d45721eaa7d50f02b65

│ └── Clones.sol

├── security

│ └── Pausable.sol

├── token

│ ├── common

│ │ └── ERC2981.sol

│ ├── ERC721

│ │ ├── ERC721.sol

│ │ ├── IERC721.sol

│ │ ├── IERC721Receiver.sol

│ │ ├── extensions

│ │ │ ├── ERC721Burnable.sol

│ │ │ ├── ERC721Consecutive.sol

│ │ │ ├── ERC721Enumerable.sol

│ │ │ ├── ERC721Pausable.sol

│ │ │ ├── ERC721Royalty.sol

│ │ │ ├── ERC721URIStorage.sol

│ │ │ ├── ERC721Votes.sol

│ │ │ ├── ERC721Wrapper.sol

│ │ │ ├── IERC721Enumerable.sol

│ │ │ └── IERC721Metadata.sol

│ │ └── utils

│ │ └── ERC721Holder.sol

└─── utils

 └── cryptography

 └── MessageHashUtils.sol

The following contracts were audited at the b027c35 commit but only the changes between

versions 5.0 and 4.9 were in scope:

contracts

└─── utils

 ├── Arrays.sol

 ├── Base64.sol

 ├── Create2.sol

 ├── cryptography

 │ └── ECDSA.sol

 ├── introspection

 │ ├── ERC165.sol

 │ ├── ERC165Checker.sol

 │ └── IERC165.sol

 └── structs

 └── BitMaps.sol

Phase 4

We audited the OpenZeppelin/openzeppelin-contracts repository at commit b5a3e69 and the

following files were in scope:

contracts

├── access

│ └── manager

Contracts 5.0 Release − Scope − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/b5a3e693e7eeca8d5f608460fd8beeee8e332b03

│ ├── AccessManaged.sol

│ ├── AccessManager.sol

│ ├── IAccessManager.sol

│ ├── IAccessManaged.sol

│ └── IAuthority.sol

└── utils

 └── types

 └── Time.sol

The following contracts were audited at the b5a3e69 commit but only the changes between

versions 5.0 and 4.9 were in scope:

contracts

└── utils

 └── math

 │ └── SignedMath.sol

 ├── structs

 │ ├── EnumerableMap.sol

 │ └── EnumerableSet.sol

 └── Multicall.sol

Phase 5

We audited the OpenZeppelin/openzeppelin-contracts repository at commit adbb8c9 and the

following files were in scope:

contracts

├── proxy

│ └── utils

│ └── Initializable.sol

├── security

│ └── ReentrancyGuard.sol

├── governance

│ ├── extensions

│ │ ├── GovernorCountingSimple.sol

│ │ ├── GovernorSettings.sol

│ │ ├── GovernorStorage.sol

│ │ ├── GovernorTimelockAccess.sol

│ │ └── GovernorTimelockControl.sol

│ ├── Governor.sol

│ ├── TimelockController.sol

│ └── utils

│ └── Votes.sol

└── utils

 ├── cryptography

 │ └── MerkleProof.sol

 └── structs

 └── DoubleEndedQueue.sol

The following contracts were audited at the adbb8c9 commit but only the changes between

versions 5.0 and 4.9 were in scope:

Contracts 5.0 Release − Scope − 9

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/b5a3e693e7eeca8d5f608460fd8beeee8e332b03
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/adbb8c9d27e77452bc2253397908d3d044808e62
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/adbb8c9d27e77452bc2253397908d3d044808e62

contracts

└── governance

 └── extensions

 ├── GovernorVotes.sol

 ├── GovernorVotesQuorumFraction.sol

 ├── GoverorPreventLateQuorum.sol

 └── GovernorTimelockCompound.sol

Overview

The major version 5.0 of this library brings many breaking and important changes. Before

diving into each phase's changeset description, the general applicable changes include:

A switch from require statements to custom errors instead. Custom errors have been

introduced with the latest Solidity versions and are a natural evolution of error handling

within Solidity. require statements had to be managed with custom strings to

describe the error, introducing difficulties and error-prone techniques; custom errors on

the contrary are more explicit and easy to handle, making the code more readable and

robust. The team is also behind the draft of EIP-6093 in an effort to standardize custom

errors being used for common token implementations. Finally, custom errors appear to

be more convenient in terms of gas costs as one can read from a benchmark test that

the team performed.

Updated the Solidity version to 0.8.20. This sparked a discussion about the compatibility

with chains that lack adoption of the PUSH0 opcode. You can read more about the

needs and consequences here.

Some contracts were removed, like Counters , and some others have been added

such as Nonces .

The code style went under a refactor that greatly improved consistency across all files.

Some examples are contracts that had to be marked as abstract when they were not,

contracts that were a good fit to be defined as library instead and modifiers that now are

consistently using internal functions instead of having the logic directly within their

definition.

There is a more detailed and technical changelog here. Below is a brief breakdown of the focus

and the corresponding set of changes for each individual phase.

In Phase 1, we focused mainly on token standards ERC-20 and ERC-1155. The main changes

are in the inner mechanics. The _update internal function is now in charge of summarizing

the contracts' token accounting logic when it comes to transfers, minting/burning and

•

•

•

•

Contracts 5.0 Release − Overview − 10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/utils/Address.sol#L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Address.sol#L13
https://eips.ethereum.org/EIPS/eip-6093
https://ethereum-magicians.org/t/eip-6093-custom-errors-for-commonly-used-tokens/12043/3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/proxy/utils/UUPSUpgradeable.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4489
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/utils/Counters.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/utils/Counters.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v5.0/CHANGELOG.md
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L241
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L241

allowances checks. The _update function replaced many internal functions that were

previously used to handle the same logic. With this change, the team believes in better

maintenance of the code while having a more modular and compact code. Moreover, the

legacy transfer hooks are now removed and replaced by overrides of the _update function,

making custom integrations easier to perform.

In Phase 2, we switched the focus to proxies and their related contracts. One change is that

ERC1967Upgrade is no longer an abstract contract, and is now a library, renamed to

ERC1967Utils . Apart from this, there is an important change in design in which the

TransparentUpgradeableProxy now deploys its own ProxyAdmin , assigning it to an

immutable _admin variable so that there will be a new proxy admin for every transparent

proxy with no possibility to change it. The same thing occurs with beacons, which are

immutable and cannot be changed once set.

Phase 3 was about auditing ERC-721 and some basic access contracts in preparation for a big

change in Phase 4. The ERC-721 part was similar to Phase 1, where the most important

changes are the use of the _update function and the removal of before and after hooks.

Notice that even if before and after transfer hooks were removed, the check on ERC-721

received is still supported, given the fact that it serves an explicit and separate security

concern. In this phase, we also inspected the Ownable contract, where a notable change is

that the contract does not default to _msgSender as the initial owner anymore, and an

initialOwner parameter must be specified upon construction.

In Phase 4, we moved to one of the main features of this new major version: the

AccessManager contract. The AccessManager can be seen as a more sophisticated

access management solution combining and extending the concepts of AccessControl and

TimelockController . Some of its features are:

Access management rules are defined per function selector for each managed contract.

The rules are defined and handled altogether in the AccessManager contract for any

set of contracts.

Each restricted function is linked to a group allowed to access it. A group essentially

defines a role. Members are granted access to a group by the group's admin. The group

linked to a function can be changed by an authorized entity.

Each member is configured with two kinds of delays:

A grant delay, which is the time period that needs to pass from the time point

when the member is granted access until the time point that the member becomes

active. All members of a group share the same grant delay.

An execution delay, which is a timelock-like delay defining the time period that

needs to pass from when the member schedules the call to a restricted function

•

•

•

◦

◦

Contracts 5.0 Release − Overview − 11

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/token/ERC20/ERC20.sol#L222-L293
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/token/ERC20/ERC20.sol#L348-L364
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L45
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L45
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/proxy/ERC1967/ERC1967Upgrade.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/proxy/ERC1967/ERC1967Upgrade.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L63
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L63
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L63
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/BeaconProxy.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L247
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L247
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L448
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L448
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/access/Ownable.sol#L28
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.9/contracts/access/Ownable.sol#L28
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L456
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L271
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L353
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L354

until the time point from which on the member is allowed to actually call that

function.

Delay mechanisms are defined for the administration tasks within the AccessManager

contract. All sensitive operations (e.g., setting the grant delay for a group, changing a

group's admin, changing the group linked to a restricted function) are subject to a delay

mechanism.

The relay functionality allows deployed Ownable contracts to migrate to an

AccessManager instance by transferring the ownership to AccessManager and

relaying the restricted functions calls through it (and similarly for deployed

AccessControl contracts).

While it can be difficult to approach because of the increased complexity, the

AccessManager provides a more flexible management system residing in a unique central

contract, while featuring relays and administrations in an entire system. Additionally, during this

phase, the Time contract has been audited. This new contract defines a Delay type to

represent duration (delay) that can be configured to change value at a given time point

automatically.

Finally, in Phase 5, we focused on the governance module. The governance module has been

modified to integrate a new GovernorTimelockAccess extension contract, to enable

compatibility with AccessManaged contracts. The added value here is that proposal targets

that are subject to AccessManager delays do not require separate proposals for scheduling

and executing the target. In addition, the GovernorStorage extension contract has been

introduced, which enables storing the proposals' details in storage as well as proposal

enumerability.

Update: During the fix review of the different phases, the contracts team changed the code to

adopt some more explicit naming conventions. In particular, AccessManager 's groups are

now called roles while the relay function is now renamed in execute . We keep the old

naming within this report to avoid confusing the reader and to keep consistency with the issues

descriptions. In addition, as part of the pull request #4644 the code has been slightly refactored

to be more strict in regards to valid actions scheduling.

•

•

Contracts 5.0 Release − Overview − 12

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L486
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L620
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/types/Time.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/types/Time.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4644

Security Considerations

and Threat Model

As security researchers, our focus has primarily been on auditing protocols within the

blockchain ecosystem, ensuring their robustness and resilience against potential

vulnerabilities. However, in recent times, this scope has expanded to include the examination

of libraries - foundational code that serves as a basis for developers to extend and build upon.

With this new area of investigation, we have come to realize that the traditional severity

definitions, which were initially designed for protocols, may not fully cover the vulnerabilities

that libraries can introduce.

In libraries, vulnerabilities can take on different forms. First, there are explicit flaws where

specific parts of the library, such as contracts or functions, do not perform as intended. These

issues can directly impact the security of the library and, by extension, the protocols built upon

it.

However, challenges arise with implicit vulnerabilities. While the individual components of the

library may work properly in isolation, combining multiple contracts or engaging in certain

actions, such as overriding virtual functions, can unexpectedly introduce security risks. This

suggests that the vulnerability lies not with the developer's implementation but rather with the

design of the library itself. You can read about those at the end of this report.

During this audit, our approach has been to try to simulate use cases and classic user patterns

and mistakes when it comes to developing smart contracts. While we approached the

codebase from many different angles, we did not lose the focus on assessing the correctness

of the code itself. Finally, the OpenZeppelin Contracts library has been a pillar for many

projects in the past and many more yet to come, and for this, we also tried to bring

recommendations and areas of research and study for the team to bring its adoption and

security even further.

About severity classifications, we used this as a reference guide:

critical: The issue significantly jeopardizes the security of the protocol built upon the

library, leading to a high risk of compromising sensitive information, causing substantial

financial losses, or severely damaging the protocol's reputation.

•

Contracts 5.0 Release − Security Considerations and Threat Model − 13

high: The issue poses a substantial risk to the security of the protocol built upon the

library, potentially compromising sensitive information, causing temporary disruptions, or

resulting in moderate financial losses.

medium: The issue presents a moderate risk to the security of the protocol built upon the

library, potentially affecting a subset of users, having a moderate financial impact, or

having a workaround.

low: The issue represents a relatively minor risk to the security of the protocol built upon

the library, typically with limited or infrequent exploitation potential. It may involve non-

security related concerns worth noting to enhance the codebase's quality.

note & additional info: This category encompasses non-security relevant issues that are

worth noting to improve the codebase's overall quality, irrespective of their direct impact

on the security of the protocol.

Finally, the methodology we adopted also included pre-audit threat modelling sessions

between the security services team and the contracts team to investigate particular angles of

attack on the contracts and create priorities about what to focus on when auditing specific

contracts. These have been fruitful conversations where the auditors had the opportunity to

learn the motivations behind particular code designs and patterns. The contracts team was

provided with increased visibility over the typical attack vectors and scenarios that are

prepared when assessing the security of the contracts.

•

•

•

•

Contracts 5.0 Release − Security Considerations and Threat Model − 14

High Severity

H-01 Potential Inaccuracies in Voting Unit
Accounting When Overriding the
ERC20Votes#_getVotingUnits Function's
Formula

The _getVotingUnits function in the ERC20Votes contract determines the voting power

of an account, typically based on its token balance. This function is designed to be overridden,

allowing developers to modify the voting power system, such as implementing quadratic

voting.

However, if this function is overridden and the formula is altered, there is a potential issue with

the accounting of voting units during token transfers, particularly when the token holder

delegates their votes to themselves or another address.

The problem arises because the _update function in the ERC20Votes contract invokes the

_transferVotingUnits function from the Votes contract, passing the transferred token

amount as a parameter instead of the corresponding voting units that these tokens represent

for either the from address or its delegate.

Let's consider a quadratic voting system as an example. Suppose Alice holds 100 tokens and

delegates her voting power to Bob. In this scenario, Bob would possess 10,000 voting power

units (100^2 = 10,000).

Now, let's assume Alice transfers her 100 tokens to Charlie, who delegates tokens to himself.

During the transfer:

The voting power transferred from Alice to Charlie would be 100 instead of 10,000. This

discrepancy occurs because line 112 uses the raw transferred token amount instead of

the underlying voting units. As a result, Bob would have 9,900 voting power units, while

Charlie would have 100 voting power units, leading to an inaccurate distribution.

The _totalCheckpoints variable, which tracks the total voting power units over time,

would also yield incorrect calculations as it utilizes the raw token amount instead of the

underlying voting units.

•

•

Contracts 5.0 Release − High Severity − 15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L43
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L43
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L182-L187
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L182-L187

Furthermore, if Charlie re-delegates his tokens to Bob, Bob's new voting power would consist

of the remaining 9,900 voting units plus an additional 10,000 voting units, resulting in a total of

19,900 voting power units. This behavior arises because the _delegate function in the

Votes contract correctly utilizes the _getVotingUnits function to calculate the voting

power units to be transferred.

Exploiting this vulnerability, an attacker could artificially inflate their voting power and

potentially seize control of the governance by creating and voting for proposals.

When calling the _transferVotingUnits function in the _update function of the

ERC20Votes contract, consider sending as the third parameter

_getVotingUnits(account) instead of amount , and also changing the from and to as

parameters, send delegates(from) and delegates(to) respectively.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

The suggestion in this issue doesn't work, because the parameter to

_transferVotingUnits in _update needs to be the amount being transferred, not

the total voting units of one of the accounts. We considered an alternative fix adding a

_toVotingUnits(uint256) function to convert from token amounts to voting units

that could be overridden if necessary. However, we found that overriding this function is

also error-prone, especially if implementing something complex like quadratic voting,

but even in simpler functions due to the potential for rounding errors. In the end, we

have decided to just add a comment warning about the potential error.

H-02 Non-Compliance of ERC2771Context With
ERC Could Lead to Incorrect Address Extraction

The implementation of the _msgSender function in ERC2771Context does not adhere to

the specifications laid out by the EIP. Specifically, it fails to retain the original msg.sender

when msg.data is shorter than 20 bytes.

In cases where msg.data is less than 20 bytes, the extracted address becomes

address(0) . This is due to the EVM reading out-of-bounds calldata as zeros. Consequently,

address(0) will be returned as the msg.sender .

Coincidentally, due to a separate vulnerability, if the refundReceiver in the forwarder's

executeBatch method is set to be the receiver contract, it will result in a call that is also not

compliant with the EIP, since it does not append the sender's address to the end of the

calldata.

Contracts 5.0 Release − High Severity − 16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L174
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L174
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L52
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24-L34
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24-L34
https://eips.ethereum.org/EIPS/eip-2771#extracting-the-transaction-signer-address
https://www.evm.codes/#35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179

In combination with the non-compliant address extraction, if both contracts are used together,

and the receiver contract implements a fallback or a receive method that makes use of the

_msgSender() method, the contract will interpret the sender as address(0) . This can

result in unexpected consequences, as this address is often used as a default or burn address,

and is presumed to be an impossible sender. For example, tokens explicitly or implicitly owned

by address(0) or contracts with revoked ownership may be exploited. The high likelihood of

this occurring, despite the multiple prerequisites, is demonstrated by the fact that both of the

needed vulnerabilities co-exist in this codebase.

Consider adhering to the original specifications and returning the original msg.sender when

msg.data is less than 20 bytes.

Update: Resolved in pull request #4481 at commit 7ec712b, pull request #4484 at commit

e4435ee. The OpenZeppelin Contracts team stated:

Addressed in two steps:

Default _msgSender() to the original msg.sender if the calldata length is less

than 20 bytes.

Default _msgData() to the original msg.data if the calldata length is less than

20 bytes. This was done so that both _msgData() and _msgSender() are

consistently used together and not partially overriding the data but not the sender

in some cases.

H-03 Risk of Failed L2 and Sidechain
Deployments with Solidity Version 0.8.20

The codebase has been updated to Solidity pragma ^0.8.20 . With this version, Shanghai

becomes the default EVM version employed by the Solidity compiler and hardhat. This may

pose an issue for projects deploying to L2s and non-Ethereum-mainnet chains, most of which

don't support Shanghai EVM. Specifically, the compiler will generate bytecode that includes

push0 , which will cause deployment failures on these chains.

Since projects will have to configure their project to use a non-default evmVersion

proactively, a significant number of projects may overlook this new requirement when using the

new library version. Crucially, this problem is likely to go unnoticed until the deployment stage.

During deployment, most transactions are likely to fail due to the invalid opcode. Besides failed

deployments, there's a risk of projects transferring funds or ownership to an address presumed

to be deployed, but which contains empty code due to the failed deployment. This is because

•

•

Contracts 5.0 Release − High Severity − 17

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4481
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/7ec712baa50525353360a43700f953912bebef9c
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4484
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/e4435eed757d4309436b1e06608e97b6d6e2fdb5
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v4.9.3...audit/2023-08-01
https://github.com/ethereum/solidity/releases/tag/v0.8.20
https://github.com/ethereum/solidity/releases/tag/v0.8.20
https://hardhat.org/hardhat-runner/docs/guides/compile-contracts#configuring-the-compiler
https://eips.ethereum.org/EIPS/eip-3855
https://eips.ethereum.org/EIPS/eip-3855

the failed deployment transaction will still carry a non-empty contractAddress field, and

that address will still accept function calls and native token transfers.

While the impact of a failed deployment would be limited in most cases, it will be a disruptive

event for a project, requiring investigation and causing deployment delays. Additionally, the

impact on the contracts library's reputation could be significant if multiple projects encounter

this issue. Given its high likelihood and medium impact, this problem's severity appears high.

Consider maintaining the use of ^0.8.19 until the community is well aware of the risks and

tooling has improved to mitigate these risks for most projects.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We are using ^0.8.20 because we need compiler features that were launched in 0.8.20.

We recommended that Hardhat default its evmVersion to Paris and they have

implemented it, to be included with the next release. Foundry already has the same

default. With this change we feel comfortable releasing with pragma ^0.8.20.

Medium Severity

M-01 Potential Reentrancy in ERC1155._update
Function

When the _update function of the ERC1155 contract is triggered either by a transfer or a

mint/burn, the last action performed in the execution is acceptances checks, where the

execution calls the to recipient doing an external call in the case it's not an EOA and it's

effectively a contract.

This means that the recipient contract must implement IERC1155Receiver and answer to

the external call properly to let execution flow without errors. If the recipient happens to be a

contract that either fails in returning the right data or just fails in returning any data, then the

_update execution will revert.

This is dictated by the EIP definition. However, when dealing with a smart contract library that

makes extensibility the most important feature, one should take care of this external call and

avoid falling into the error of failing at the checks-effects-interactions pattern.

Concretely if a contract extends from ERC1155 and overrides the _update function in a way

that it performs state updates after the super._update call, the external call might be used

Contracts 5.0 Release − Medium Severity − 18

https://github.com/NomicFoundation/hardhat/pull/4336
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L157
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L157
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L189-L201
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol
https://eips.ethereum.org/EIPS/eip-1155#erc-1155-token-receiver

maliciously to reenter the contract before those state updates are performed, violating the

mentioned security pattern.

Consider informing the users in the docstrings of the limitation. One mitigation might be

isolating the acceptances checks and so the external call, separately from the _update

functions so that implementers that override _update have the flexibility to perform those

external calls at the very end of their execution.

Update: Resolved in pull request #4398. The OpenZeppelin Contracts team stated:

We have split _update into two parts:

1) _update contains balance update logic.

2) _updateWithAcceptanceCheck invokes _update and invokes the receive

hook. Overrides to _update are no longer vulnerable to reentrancy.

M-02 Unhandled Silent Failures

There are some cases in the code base where failures are not handled early nor routed to some

explicit error message. This means that execution can unexpectedly stop, finally reverting.

In the ERC1155Supply._update function, the check that ids and amounts have

the same length is performed in the super._update call but not before arrays are

being iterated once. If there is a length mismatch there is a high chance that the for

loop will end up accessing bad data locations and the transaction will revert.

Again in the ERC1155Supply._update function, the user input parameter amounts

is deducted from _totalSupply[id] without any previous balance check, meaning

that the subtraction can actually overflow, reverting the transaction. The same happens

in the increaseAllowance function of ERC20 and in the

safeIncreaseAllowance of SafeERC20 .

Following the "fail early and loudly" principle, consider including specific and informative error-

handling structures to avoid unexpected failures.

Update: Resolved in pull request #4398.

•

•

Contracts 5.0 Release − Medium Severity − 19

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L164
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L164
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L56
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L69
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L184
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L184
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/utils/SafeERC20.sol#L59
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/utils/SafeERC20.sol#L59
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398

M-03 Lack of Context Usage

Line 115 of ERC20FlashMint uses msg.sender instead of the _msgSender function to

get the message's sender, even though the docstrings of the _msgSender function say:

Provides information about the current execution context, including the sender of the

transaction and its data. While these are generally available via msg.sender and

msg.data, they should not be accessed in such a direct manner, since when dealing

with meta-transactions the account sending and paying for execution may not be the

actual sender (as far as an application is concerned).

This effectively prevents the use of such a contract with meta transactions (additionally not

adhering to the EIP) since msg.sender is taken as initiator while it might just be the

trusted forwarder of a meta transaction.

In the worst-case scenario, the receiver (or Borrower) implementation is the one suggested

by the flash loan EIP, and in the case of a meta transaction, the transaction will revert because

the msg.sender will not be the receiver itself.

Consider fixing it using the _msgSender function. Alternatively, consider adding a comment

explaining why msg.sender is used instead of _msgSender , to avoid contradicting the

implementation of this function with the documentation provided in the Context contract.

Update: Resolved in pull request #4398.

M-04 Tokens Might Get Stuck in the Contract -
Phase 1

There are some places in the codebase where without any user custom implementation, the

library leaves open the doors for ERC20 tokens to get stuck inside the token contract itself.

The ERC20Wrapper contract has a depositFor function that checks whether the sender

is address(this) or not but never checks whether the account parameter, to which

ERC20Wrapper tokens are minted, is the same address(this) or not. If it happens to be

account == address(this) then tokens are effectively stuck in the contract, as long as

the user doesn't create a custom implementation with a function that is capable of transferring

them out of the contract. Similarly, the withdrawTo function never checks the same when

doing the safeTransfer instruction. Since there's no assumption on what underlying

looks like, if the underlying token accepts self-transfers, an ERC20Wrapper amount of

tokens will be burned, while the same amount of underlying is not transferred anywhere else. In

Contracts 5.0 Release − Medium Severity − 20

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L115
https://eips.ethereum.org/EIPS/eip-3156#implementation
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L67
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L67

this case, the situation can be recovered by the use of _recover which will mint again the

spread and bring back a 1:1 ratio between the two tokens.

Further, the _recover function itself allows the caller to send any stuck underlying tokens in

the contract to an account sent by parameter. This amount is calculated by checking the

difference between the contract's underlying amount and the wrapped token's total supply.

However, if there are underlying tokens that are stuck, if someone calls the _recover

function and provides the contract itself as a parameter (i.e., the ERC20Wrapped contract),

then the total supply of the underlying token will have again a 1:1 ratio with the

ERC20Wrapped contract, and those funds also will get stuck.

The same exact issue happens with ERC20FlashMint , where the receiver of flash loan fees

is not checked to not be address(this) , eventually letting tokens be stuck within the

contract again.

Since the library doesn't provide built-in functions to sweep tokens stuck in the contract,

consider either creating a feature which is easy to plug in but that is optional or completely

avoiding such edge cases by implementing proper checks. Leaving the door open for tokens

to be stuck in the contract with no way to sweep them out is a common error, as we can see

from USDT, DAI or many other token contracts which hold millions of dollars that are stuck

there forever.

Update: Partially resolved in pull request #4398. The flashFeeReceiver is still not checked

to not be address(this) . The OpenZeppelin Contracts team stated:

If the developer overrides flashFeeReceiver to return address(this) , we

assume they are doing that intentionally and do not want to disallow it.

M-05 ERC2771Forwarder May Call Receiver
Without Appending Sender's Address

If the refundReceiver in the forwarder's executeBatch method is set to be the receiver

contract, it will result in a call that is not compliant with the EIP since it does not append the

sender's address to the end of the calldata.

While the EIP specification prevents incorrect address extraction in this case, as the calldata

would be shorter than 20 bytes, this protection may not be implemented by all receivers. As a

result, if the forwarder is trusted by a receiver that does not apply the length rule, the receiver

may extract an incorrect sender address (e.g., address(0)). This can result in unexpected

consequences, as this address is often used as a default or burn address, and is presumed to

Contracts 5.0 Release − Medium Severity − 21

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L77
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Wrapper.sol#L77
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L118
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/address/0x6b175474e89094c44da98b954eedeac495271d0f
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179
https://eips.ethereum.org/EIPS/eip-2771

be an impossible sender. For example, tokens explicitly or implicitly owned by address(0) ,

or contracts with revoked ownership, may be exploited. The likelihood of this occurring,

despite the multiple prerequisites, is demonstrated by the existence of this receiver

vulnerability (described separately) in this codebase.

Consider making the call compliant with the EIP by appending the contract's own address to

the calldata as the ERC-2771 msg.sender . Alternatively, consider avoiding the need to make

an arbitrary destination call by utilizing WETH to make a token transfer to the refund recipient.

Update: Acknowledged, not resolved but documented in pull request #4502 at commit

a06b352. The OpenZeppelin Contracts team stated:

We documented the expected behavior of a refund receiver when it trusts the forwarder.

Our ERC2771Context implementation also properly handles this issue after solving

H-02.

M-06 Immutable Beneficiary Security Risks and
Potential Loss of Funds

The VestingWallet contract's beneficiary is immutable. However, during an extended

vesting period, the beneficiary might need to migrate to a different account, either due to a

suspected security breach of their private key or to bolster account security by shifting to a

hardware wallet, a multisig, or an account-abstracted wallet.

The likelihood of such scenarios increases with longer vesting schedules. Over time, the

beneficiary's security needs and the available wallet options are likely to evolve. Additionally,

the unvested tokens' value could potentially grow substantially, necessitating a more robust

security solution than initially available or justified.

In addition to the above, the contract does not provide a way for the beneficiary account to

prove its ability to control the contract before funds are transferred into it. As a result, if the

beneficiary's address is set inaccurately - be it to a contract address on another chain, an

address that requires aliasing on L2, or simply an erroneous EOA - funds forwarded to the

contract could be permanently lost. Although this could be attributed to a benefactor's error,

the probability of such a mistake is substantial, given the benefactor and beneficiary are

separate entities, and the benefactor is like to be managing multiple beneficiaries through

various communication channels.

Consider modifying the contract to inherit from Ownable2Step , assigning initial ownership to

the benefactor rather than the beneficiary - for instance, to msg.sender - and nominating

Contracts 5.0 Release − Medium Severity − 22

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/a06b35260556899c6e5e01fe0e827b96449ef75e
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L45

the beneficiary as the pending owner. At the same time, restrict access to release methods

to onlyOwner , which prevents a malicious release from frontrunning an ownership

transfer. Crucially, this also allows the benefactor to recover any funds sent to the contract if

the beneficiary fails to invoke acceptOwnership eventually.

It's worth noting that while explicit ownership and transferability facilitate over-the-counter

(OTC) trading of unvested tokens, this is also possible with the current immutable beneficiary

design, given it could be an ownable contract or even a counterfactual contract if an EOA

check is included.

Update: Partially resolved in pull request #4508. The contract is now Ownable , with the

beneficiary as the owner. This allows to update the beneficiary, but still bears the risk of an

incorrect ownership transfer by either the benefactor when creating the contract, or by the

beneficiary when transferring ownership. Additionally, the release method remains publicly

callable. The OpenZeppelin Contracts team stated:

The risks involved with not allowing the beneficiary migration are acknowledged.

However, we decided to use Ownable instead of Ownable2Step to keep the users'

right to choose which implementation to inherit from. We will work on a lightweight

version for Ownable with optional 2 steps.

M-07 Unnecessarily Complex and Limited Design
of customRevert Callback

Several methods in the Address library (1, 2, 3, 4, 5, 6, 7) expect an argument of the

function() internal view customRevert form. Users are thereby expected to define

a distinct reverting view method, and then pass it as a function callback, similar to the

procedure for defaultRevert .

This design has three disadvantages:

The "second" revert must be used to ensure that customRevert reverts, but it is not

sufficient. For example, a RETURN opcode in an assembly block can bypass the rest of

the Solidity code, including this second revert. Although an edge case, this will cause a

failed call to not revert, violating a core intent of the library's methods.

The design does not support the customizability of the custom errors, as it does not

allow passing parameters into the callback.

This interface is not a common pattern in Solidity, making it error-prone for users.

1.

2.

3.

Contracts 5.0 Release − Medium Severity − 23

https://docs.openzeppelin.com/cli/2.8/deploying-with-create2#interacting_with_the_counterfactual_contract
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4508
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L80-L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L109-L114
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L134-L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L155-L159
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L168-L173
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L204-L208
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L223C72-L223C84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L219-L221
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L219-L221
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L234

Instead, consider using bytes memory revertData as the input parameter for the

methods. This approach offers several benefits:

It guarantees a revert.

It maintains the option for a simple error.

It allows users to pass a parameterized error.

It enables users to conform to the string-based revert / require interface if that is

their preference.

It presents a simpler, less error-prone interface for users and eliminates the need to

define a special callback.

It reduces the bytecode size of the Address library by removing defaultRevert and

simplifying _revert 's implementation.

Example code:

error SomeError();

error RichError(uint value);

function userMethod() internal {

 bytes memory errData;

 // will look like `revert SomeError()`

 errData = abi.encodeWithSelector(SomeError.selector);

 // will look like `revert RichError(42)`

 errData = abi.encodeWithSelector(RichError.selector, (42));

 // will look like `revert("some error string")`

 errData = abi.encodeWithSignature("Error(string)", ("some error string"));

 Address.libraryMethod(errData);

}

...

function libraryMethod(bytes memory errData) internal pure {

 assembly {

 revert(add(32, errData), mload(errData))

 }

}

Update: Resolved in pull request #4502 at commit 316c30c. The OpenZeppelin Contracts team

stated:

We agree with the 3 disadvantages pointed out for the customRevert function pointer

alternative. However, the issue with the recommendation is that using memory in the

arguments leaves such memory allocated, which may cause unexpected issues in

contracts using this utility. We decided to remove the error customization alternatives

•

•

•

•

•

•

Contracts 5.0 Release − Medium Severity − 24

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/316c30ce3c889eca5eae059df6dcd37dbcc11620

and we will reconsider adding them back if there is a language update that allows a less

restrictive customization mechanism.

M-08 State Updated in Modifiers May Be
Corrupted

The ReentrancyGuard.nonReentrant , Initializable.initializer and

Initializable.reinitializer modifiers can be abruptly interrupted if a RETURN

opcode in an assembly block is part of the wrapped method execution in _; .

In the case of nonReentrant , anything guarded by it will be permanently locked because

_status will remain _ENTERED .

In the case Initializable , subsequent calls to reinitializer will be locked, and also

onlyInitializing protection will be broken.

While a DoS due to broken nonReentrant and reinitializer may be noticed during

development, and possibly fixed by an upgrade, the impact of losing onlyInitializing

protection can be a total loss of funds and ownership of a contract. This is because a

dysfunctional onlyInitializing can easily be missed during development and allow the

contracts relying on it to become exploitable.

Consider using the block.number or part of its hash (either of which can be cast to be

smaller than a full slot) as flags instead of bool values. This way, the stored values can be

invalidated after loading if the current block.number does not match the loaded value. As a

result, any state corruption will have an effect on a single block only, rather than in perpetuity.

Additionally, consider adding a warning in the documentation against the usage of the

RETURN opcode in assembly blocks in code that is expected to be used with these modifiers.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Assembly returns are not part of our threat model. We think it would be unreasonable to

consider them because anything can break in that way.

M-09 Function withUpdateAt Does Not Behave
as Expected

The Time.sol contract provides a Delay type which holds a delay value that can be

configured to be updated automatically at a future timepoint. The delay value may be

Contracts 5.0 Release − Medium Severity − 25

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/security/ReentrancyGuard.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/security/ReentrancyGuard.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/Initializable.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/Initializable.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/Initializable.sol#L127
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/Initializable.sol#L127
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol

expressed in terms of block timestamp or block number values. The contract also provides a

number of helper functions for manipulating the Delay type. The contract is supposed to treat

block timestamp and block-number-based delays equivalently, and every helper function is

implemented in two separate variations in order to handle both delay units.

However, the functions withUpdate and withUpdateAt are not equivalent. More

specifically, withUpdate guarantees that in the case of decreasing the current delay value, it

cannot be updated instantly but rather its effect timepoint adheres to a minSetback period.

This is the expected behavior according to the Delay docstring. On the contrary,

withUpdateAt immediately applies the provided effect timepoint for the new delay value.

Consider reimplementing the withUpdateAt function so that it behaves similarly to

withUpdate in order to avoid mistaken expectations that could lead to misuse of the library.

Update: Resolved in pull request #4555 and pull request #4606. Note that the block-number-

based delays have been currently completely removed. The OpenZeppelin Contracts team

stated:

We removed withUpdateAt and kept only withUpdate . We also identified a

potential for misunderstanding about the meaning of a delay value when effect=0 ,

and to make this more straightforward we changed the "current value" and "pending

value" parameters into "value before" and "value after", where before/after are relative to

the effect timepoint. Note that effect=0 does not have a special meaning as it used

to.

M-10 Proposal Execution Could Fail Due to Zero-
Delayed AccessManaged Targets

The GovernorTimelockAccess contract handles proposals that may contain calls to

restricted functions managed by an AccessManager instance (_manager). Upon a proposal

submission, the _manager 's canCallWithDelay function is called for each target which

returns a tuple (bool allowed, uint32 delay) denoting the respective access

restrictions, if any.

The GovernorTimelockAccess contract ignores the boolean return variable and only

considers the delay value to determine whether the target is managed by _manager . In

case of a non-zero delay, the target will be scheduled during the queuing step and later on

executed via the _manager 's relay function. Otherwise, the target function will be called

directly by the governor, as it is considered to be a target that is not managed by _manager .

Contracts 5.0 Release − Medium Severity − 26

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L64-L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L122-L123
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L122-L123
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L49-L50
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L112
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L112
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4555
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4606
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L46
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L46
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AuthorityUtils.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AuthorityUtils.sol#L13
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L253
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L654
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L654

Note that executing through the _manager 's relay function is necessary in cases where the

target is an Ownable contract that has transferred ownership to _manager (similarly for an

AccessControl contract). For code simplicity, the current implementation executes all

targets that are found to be managed by _manager through relay .

However, there is one case where delay is zero although the target is managed by the

_manager . This is when the canCallWithDelay function returns (true, 0) , which

means that the target is managed by _manager but the caller is authorized to call the target

without a delay.

Consider respecting this case in the implementation to prevent this scenario from failing

proposal executions.

Update: Resolved in pull request #4591. The OpenZeppelin Contracts team stated:

The contract now correctly considers the boolean return value. Additionally, there is a

mechanism to ignore it for a given target function to protect against potential DoS by

AccessManager admins.

M-11 Contradictory _cancel Behavior

In the GovernorTimelockAccess contract, the _cancel function handles

AccessManager -related logic to cancel previously scheduled operations. This internal

function is getting called from the external cancel function that allows users to cancel their

proposal while it is in a pending stage.

However, the internal function is attempting to cancel scheduled operations from the

AccessManager , which due to the pending state requirement cannot exist in the first place.

In the code, this is indicated through the eta value which would not be set until the proposal

has been queued after a successful voting.

In addition, note that _cancel handles the canceling of succeeded proposals and it would be

expected that only governance would have permission for such a sensitive action. Consider

documenting the risks in case this functionality is enabled when the cancel restrictions of the

Governor contract are overridden.

Furthermore, even if the logic would be overridden to allow to _cancel a queued proposal,

then the _cancel function can leave governance in a corrupted state. This can happen in the

event that an admin of the AccessManager cancels an operation directly. Then, if a user

wanted to cancel the whole proposal, the call to cancel for one of the operations would fail and

Contracts 5.0 Release − Medium Severity − 27

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L41-L45
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L41-L45
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L41-L45
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4591
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L211
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L211
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L470
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L470
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L219-L224
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L219-L224
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L229-L232

revert the transaction. Hence, this semi-cancelled proposal could not be set to a canceled

state and the other scheduled operations in the AccessManager would eventually expire.

Consider clarifying what the intention of the internal _cancel function is and how it fits into

the overall functionality. Additionally, implement the cancel calls to the AccessManager

with the necessary exception handling for operations which have already been cancelled by

another party.

Update: Resolved in pull request #4591. The OpenZeppelin Contracts team stated:

The report is correct in that we are considering "if the logic would be overridden to allow

to _cancel a queued proposal", so even though in GovernorTimelockAccess , as

is, there is a part of the code that is not reachable, we want _cancel to be correct in

case it is exposed under different conditions. We have fixed the situation described in

the report about the corrupted governance state.

Low Severity

L-01 Potentially Incorrect maxFlashLoan Amount
When Using ERC20FlashMint And ERC20Capped
Together

The maxFlashLoan function in the ERC20FlashLoan contract determines the maximum

amount of tokens that can be flash-borrowed in a transaction. It is calculated as the difference

between the maximum value of a uint256 variable and the totalSupply of the token.

In addition, the ERC20Capped contract allows developers to set an upper limit, or cap, on the

total number of tokens for an ERC20 contract. During the minting process, the totalSupply

of the token cannot exceed the specified cap , which is defined at the time of contract

creation.

However, when using both the ERC20FlashMint contract and the ERC20Capped contract

together, the maxFlashLoan function does not take the cap into account. As a result:

Users who call the maxFlashLoan function may receive an incorrect maximum

amount. If they rely on the value returned by maxFlashLoan and request an amount

higher than the difference between the total supply and the cap , the transaction will fail

and revert.

•

Contracts 5.0 Release − Low Severity − 28

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L495
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L495
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4591
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L51

When calling the flashLoan function, lines 109-112 allow the code to proceed even if

the provided amount exceeds the cap.

Although this behavior does not pose a security risk because the _mint function called by

flashMint triggers the _update function in the ERC20Capped contract, which checks

that the new total supply does not exceed the cap , it can be confusing because the

maxFlashLoan function does not accurately represent the true maximum amount of tokens

that can be flash-borrowed.

Consider adding an internal virtual function within maxFlashLoan instead of relying solely on

type(uint256).max . By doing so, if the ERC20Capped contract is also used, users can

override the function to return super.cap() instead, ensuring that the maximum amount

reflects the capped value.

Update: Partially resolved in pull request #4398. The suggestion to add an internal function has

been discarded. However, the team acknowledged the potential issue and decided to improve

the docstrings. The OpenZeppelin Contracts team stated:

Added documentation to explain the potential issue and how to prevent it. We didn't

add an internal function because it would be no different than the existing

maxFlashLoan function.

L-02 Context Contract Is Not Used

The TransparentUpgradeableProxy uses plain msg.sender instead of the Context

contract. This makes it impossible to be used with meta transactions and is inconsistent with

the rest of the contracts in the codebase.

Consider using the Context contract instead.

Update: Resolved in pull request #4502 at commit 351565f. The OpenZeppelin Contracts team

stated:

The ProxyAdmin contract will never send a meta-transaction in any way. We prefer to

stick to msg.sender but we're documenting and making explicit the fact that we don’t

use _msgSender() .

•

Contracts 5.0 Release − Low Severity − 29

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L109-L112
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L114
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L114
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/351565f273c75be2601a4ccd27b5b6f69b1594b0

L-03 ERC2771Forwarder Must Not Hold Token
Approvals

If ERC2771Forwarder is granted a token approval by the user, their tokens can be exploited.

This is because an attacker can call the execute method to exploit the approval by

forwarding a transferFrom request to the token contract. While the attacker address will be

appended to the request, it will be ignored by the token contract, which will result in a

malicious token transfer from the approving user's wallet.

Although it is unlikely that this contract will be granted any token approvals for its current

functionality, given that the library contracts are typically extended with additional functionality

the documentation should be clear about this risk.

Consider clarifying in the documentation that no token approvals or permits should be granted

to this contract or any contract that extends it.

Update: Resolved in pull request #4502 at commit 1bd3544, at commit 11213f5, at commit

889c112, at pull request #4519 at commit b83d8fc. The OpenZeppelin Contracts team stated:

The forwarder was restricted to only call contracts trusting it to mitigate further misuse

of the forwarder.

L-04 Error-prone Failure Semantics of verify in
ERC2771Forwarder

The verify view in ERC2771Forwarder exhibits ambiguous behavior in certain failure

scenarios. It returns false if a request is expired or if the signer doesn't match. However, it

might also revert due to the use of ECDSA.recover , which reverts on signature recovery

errors.

This ambiguity in failure semantics can be error-prone and complicate integrations. For

instance, an on-chain contract or off-chain script invoking verify should anticipate both a

false return value and a potential revert. If only one of these outcomes is expected, this

could lead to unforeseen consequences. An on-chain contract might revert unexpectedly if

only false is expected. Conversely, if only a revert is anticipated, requests may be incorrectly

deemed verified.

Consider using ECDSA.tryRecover in the verify view, and return false in all invalid

scenarios.

Contracts 5.0 Release − Low Severity − 30

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/1bd35440a9eae540fa6db1fad0a87058c55db0bc
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/11213f59912149f2df68632a0b115d67092288c3
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/889c11271f704e25b6d5685e9b0b8c36e4695fd3
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4519
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4519/commits/b83d8fc90ecfb10049602a2badff2005567b7e03
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/ECDSA.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/ECDSA.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/ECDSA.sol#L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/ECDSA.sol#L53

Update: Resolved in pull request #4502 at commit 53b4feb. The OpenZeppelin Contracts team

stated:

We implemented the recommended solution of using ECDSA.tryRecover .

L-05 Inconsistent Solidity Version Used in
ERC1967Utils

Most of the contracts utilize Solidity version 0.8.19 , however, the ERC1967Utils contract

uses 0.8.20 . This discrepancy could be problematic for certain chains, especially if they do

not support the push0 opcode. This inconsistency might pass unnoticed in a project's

configuration and lead to the use of an incompatible compiler version and deployment of

incompatible bytecode.

Consider aligning the Solidity version in ERC1967Utils with the rest of the contracts to avoid

potential compatibility issues.

Update: Resolved in pull request #4489 at commit 00cbf5a. The solidity version of all files will

be updated to 0.8.20 following Hardhat's intention of supporting safe default evmVersion .

This should prevent any issues for projects on L2s and side-chains that do not support push0

opcode. Foundry's default is already safe in that regard, which means that most projects using

up to date tooling should be safe from the issue by the time the library update is released. The

OpenZeppelin Contracts team stated:

The library pragma version was bumped to 0.8.20, aligned with the version used in

ERC1967Utils which is required for proper library events accessing.

L-06 Lack of Access Control and Flexibility in
VestingWallet's Release Methods

The release methods in the VestingWallet contract, release() and

release(address) , lack access control, allowing anyone to invoke them. This presents a

potential for malicious actions, including:

Enabling attack vectors if the beneficiary has significant token approvals for certain

contracts. If these contracts are compromised, an attacker could trigger

release(address) and exploit any vested but unreleased tokens. In such cases, the

users might consider the approvals normally safe, for instance, if they typically hold

these token balances only for a short period.

•

Contracts 5.0 Release − Low Severity − 31

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/53b4febe4267abcf11dfcbfa69c942cd477c79d4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L4
https://github.com/ethereum/solidity/releases/tag/v0.8.20
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4489
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/00cbf5a236564c3b7aacdad1f378cae22d890ca6
https://github.com/NomicFoundation/hardhat/issues/4232
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L117-L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L117-L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L117-L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L117-L134

Inducing unwanted taxable events. The beneficiary may wish to time the release to their

advantage in terms of taxation. A maliciously-timed release could impact the beneficiary

by triggering unwanted tax liabilities.

Moreover, the transfer destination is not flexible, which might be problematic if the

beneficiary's income and tax structure changes over time. This could restrict the beneficiary's

ability to direct tokens to different addresses, for example, when an individual has incorporated

or wants to release tokens into an entity-controlled address.

Consider restricting the release methods to be callable only by the beneficiary. Along with this

access control, consider allowing the beneficiary to specify the transfer destination or

nominate another beneficiary instead.

Update: Acknowledged, not resolved in pull request #4508. The OpenZeppelin Contracts team

stated:

We see use cases where release() being restricted to the beneficiary is the opposite of

what's needed. As an example, custody solutions give constrained access to the private

key, and they may be able to transfer tokens but not able to call a release() function. It is

easy to add this restriction through inheritance, especially now that the contract uses

Ownable, so we are leaving it as is.

L-07 Potentially Trapped ETH in
ERC2771Forwarder

The ERC2771Forwarder contract is carefully designed to prevent the accidental trapping of

ETH by matching incoming and outgoing ETH values and by not including a receive

function. However, a scenario exists where the contract can still receive ETH. If the

refundReceiver is set to the contract's own address in the executeBatch method, it can

send ETH to itself.

Although setting the contract's own address as a refundReceiver can be considered a

user error, this is also the case for other currently prevented potential mistakes that could result

in sending ETH to the contract unintentionally.

Consider adding a check to prevent the refundReceiver from being set to the contract's

own address, in line with the existing efforts to avoid such accidental scenarios.

Update: Resolved. The OpenZeppelin Contracts team stated:

•

Contracts 5.0 Release − Low Severity − 32

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4508
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L152
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L179

The ERC2771Forwarder doesn't contain a receive() function so any value sent will

make the refund revert. Any user using this contract can enable balance management at

will.

L-08 Reentrancy Risk in
ERC1967Utils._setBeacon

Within ERC1967Utils._setBeacon , when the implementation() external call is made,

the assignment StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

has not yet been executed. Thus, if the getBeacon getter or the EIP1967 storage slot is read

during this external call, it will return an inconsistent value.

Consider updating the beacon address in the storage slot prior to making any external calls.

This could prevent potential inconsistencies due to reentrancy.

Update: Resolved in pull request #4502 at commit a94adcd. The OpenZeppelin Contracts

team stated:

Fixed as suggested.

L-09 Risk of Division by Zero in VestingWallet

In the VestingWallet contract, if the duration is set to zero by the deployer, the contract

behaves similarly to an asset timelock for the beneficiary. However, in this case, there's a risk

of division by zero in the _vestingSchedule function. If the duration is set to zero,

start() and end() will be identical. Thus, calling _vestingSchedule with a

timestamp equal to start() and end() will result in a division by zero error in the vesting

formula, causing the transaction to revert for that particular block.

Consider using >= in the else if branch condition to prevent the division by zero in this

scenario.

Update: Resolved in pull request #4502 at commit 9afa6c9. The OpenZeppelin Contracts team

stated:

Fixed as suggested.

Contracts 5.0 Release − Low Severity − 33

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L154
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L154
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L159
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L159
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/a94adcd82c8c58e02af6778e08d22a6221a89546
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L157
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L157
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/9afa6c9e50d6d63f6fa4e97262d9c38a7ce692b5

L-10 Risk of Ownership Loss Due to Single-Step
Ownership Transfer in UpgradeableBeacon and
ProxyAdmin

The UpgradeableBeacon and ProxyAdmin contracts utilize the Ownable (1, 2) contract

for access control. This single-step ownership transfer method can be error-prone, potentially

leading to loss of ownership.

Consider adopting the Ownable2Step contract instead.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We agree with the risk of ownership loss and we'll consider further options for providing

a more robust workaround. For now, both ProxyAdmin and UpgradeableBeacon

are kept using Ownable in order to prioritize flexibility for the library users. The current

setup is already extensible, whereas Ownable2Step can't be opt-out.

L-11 ERC-165 Check Is Too Permissive

ERC-165 specifies that a compliant contract must return a bool, implementing the interface

supportsInterface(bytes4) returns(bool) . However, the check in

ERC165Checker will return true for a broader set of return values, such as a uint that is

greater than 0, or a bytes array of any nonzero size. In general, any return data of a length

greater than one word, in which the first word is not 0, will cause the check to return true . In

contrast, Solidity's abi.decode will revert for such values, for example

abi.decode(abi.encode(uint(2)), (bool)) will revert.

Consider restricting the check to require returnValue == 1 to mimic Solidity's decoding

behavior of a single bool(true) return value. Additionally, consider restricting the check of

returndatasize to exactly 32 bytes, despite the fact that this will be stricter than Solidity's

abi.decode behavior, to more strictly enforce the expected interface.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

When ERC-165 was defined Solidity hadn't yet switched to ABI coder v2 by default.

Prior to v2, compliant contracts could behave in a way that would not work for the

suggested implementation, because any nonzero value was interpreted as true when

decoded as a boolean. Because of this we are keeping the current behavior.

Contracts 5.0 Release − Low Severity − 34

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L15
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L13
https://eips.ethereum.org/EIPS/eip-165
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/introspection/ERC165Checker.sol#L122
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/introspection/ERC165Checker.sol#L122
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/introspection/ERC165Checker.sol#L122

L-12 address(0) Is Allowed as the Initial Owner

When transferring ownership in the Ownable contract, the address of the newOwner is

checked against address(0) in order to avoid completely renouncing the ownership by

mistake. Instead, the special function renounceOwnership should be called for this

purpose.

However, upon constructing an Ownable instance, the initial owner address is not checked

against address(0) .

Consider adding a zero address check for the initial owner address upon construction, to avoid

wrongly deployed instances but also to remain consistent with the rest of the contract's code.

Update: Resolved in pull request #4531.

L-13 Enumeration Methods Are Unnecessarily
Limited

The enumeration methods of EnumerableSet (1, 2, 3) and EnumerableMap (1, 2, 3, 4, 5)

only support returning the full array. The documentation states that this action can only be

useful in the context of off-chain views, since it may be either too expensive to run or may even

not be possible to run at all if the array is long enough to exhaust a single block's gas limit.

This is problematic because if the goal of these data structures is to provide an enumerable set

and map, the goal is not accomplished as currently implemented, and this implied core

functionality is not fully usable. That said, allowing paginated or sliced enumeration should be a

simple and limited update to the logic of EnumerableSet 's _values() . In addition to the

logic, the interfaces would need to be updated to allow passing additional arguments into the

values() and keys() methods to specify either the pagination or the slicing parameters: -

For pagination, a page size and page index would need to be passed, where array length and

index 0 would replicate the current behavior. - For slicing, the start index and end index (or

number of elements) would need to be passed, where start index 0 and array length would

replicate the current behavior.

Consider implementing slicing or pagination in the keys' and values' enumeration methods to

allow them to be used more flexibly.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Contracts 5.0 Release − Low Severity − 35

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L82-L83
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L82-L83
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/Ownable.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4531
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L219-L229
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L293-L303
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L367-L377
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L158
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L244
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L338
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L432
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L526
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L153
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L153
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L153

We consider the methods at and length to be a form of enumerability, and this is the

form that is recommended to be exposed publicly.

L-14 Proposal Front-Running Protection Fails
Silently

In the Governor contract, the _isValidDescriptionProposer function checks whether

the description includes a #proposal=0x string followed by an address. As a front-running

protection measure, this is to make the proposal optionally proposer dependent for the

respective proposal id.

The validation function checks the proposer address string towards the end of the description

and silently ignores the validation when an unexpected format is given. This means that a

proposal with a simple mistake, such as a trailing whitespace, can still be front-run.

Consider making the validation more tolerant for user mistakes by parsing the whole

description for the proposal query parameter and reverting if the address is badly formatted or

doesn't match the proposer.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Not addressing. We don't consider silent failure is a significant risk here, and the logic

required to parse and detect malformed string suffixes would be too complex and

expensive to be justified. The worst that can happen is that the proposal becomes

frontrunnable, and if it is indeed frontrun the proposer can resubmit it.

L-15 TimelockController Allows Sending ETH by
Default

The TimelockController contract has an empty receive function to enable other

accounts to send ETH to it. This might be necessary to further execute scheduled calls that

require ETH. However, this also enables users to accidentally lose their ETH by sending it to

the contract.

Consider either removing the receive function so that it needs to be implemented in an

extended contract if it plans on handling ETH, or protecting the function through the existing

proposer, executor, and canceller roles.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Contracts 5.0 Release − Low Severity − 36

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L760
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L760
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L155
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L155

Not addressing. The TimelockController is designed to be a kind of wallet. It has the

ability to extract ETH through the timelock process so there is no risk of loss. We want

the contract to be usable out of the box without extending to add basic features.

L-16 Unintuitive and Inconsistent Proposal State
Timing

In the Governor contract, a proposal has a life-cycle of multiple states. E.g., the state can be

pending or active depending on the vote start and end time.

These states are implemented such that on the vote start time point, the proposal is still

pending. This behavior can be unintuitive and potentially cause confusion for applications.

Consider adjusting the bound to be inclusive towards the beginning of the voting period.

In addition, on the deadline time point the proposal is still active while in the

TimelockController contract the delay deadline time point is excluded from the delayed

period. Consider adjusting the code so that a common convention is followed regarding time

periods bounds throughout the codebase.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Not addressing. 1. Vote start cannot start earlier because it is the vote snapshot block.

The block needs to end before ERC20Votes can answer getPastVotes queries. 2. We

prefer to keep Governor behaving as it is now for compatibility with existing Governors

and GovernorBravos.

L-17 Overloaded Error Messages

Throughout the codebase the following instances of overloaded error messages were noted:

In Initializable.sol , the error AlreadyInitialized() on line 146 and line 186

are not accurate as the contracts are in the process of initializing, thus not already

initialized. Consider using a custom error reflecting the state that it is

StillInitializing() .

In MerkleProof.sol , the error MerkleProofInvalidMultiproof() is used in

two different scenarios. The first appearance is when the lengths of leaves, proofs and

flags violate the invariant and the second appearance is when there are unused elements

left in the proof array. Consider using different and informative error messages for these

two distinct cases.

•

•

Contracts 5.0 Release − Low Severity − 37

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L159-L160
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L159-L160
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L165-L166
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L213
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/proxy/utils/Initializable.sol#L146
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/proxy/utils/Initializable.sol#L186
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L121
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L146

Update: Partially resolved in pull request #4592. The OpenZeppelin Contracts team stated:

1. Addressed by renaming the error to InvalidInitialization. 2. Did not address. We

consider that "invalid multi proof" is accurate. The second instance of the error is also

part of the invariant, but one that we can check most efficiently after iterating over the

proof.

Notes & Additional

Information

N-01 Allowances And Approval Inconsistencies -
Phase 1

The ERC20 contract allows for self approvals, while ERC1155 doesn't allow for that.

Moreover, the ERC1155 contract can approve an allowance to the zero address, while this is

not possible in the ERC20 contract.

Whether this inconsistent behaviour is given by following EIP guidelines or not, consider stating

that in the docstrings. If there are no EIP-imposed restrictions, consider making the library

consistent in how it handles approvals and allowances across all the contracts.

Update: Resolved in pull request #4398. The OpenZeppelin Contracts team stated:

None of these requirements are a part of the ERCs. We have allowed self-approvals and

disallowed address(0) approvals in ERC1155 to align with ERC20.

N-02 Gas Optimization - Phase 1

There are some areas of the codebase where either its style can be improved or changes can

be made to save gas:

The _msgSender function is called three times when transferring in the ERC1155

contract. It might be worth caching its value.

In line 67 of the ERC1155Supply , the ids[i] value is cached in a local variable, while

in line 58 ids[i] is not. Consider making the style consistent.

•

•

Contracts 5.0 Release − Notes & Additional Information − 38

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4592
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L320
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L354
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L356
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L318
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L318
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L141-L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L141-L143
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L67
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L58

Update: Resolved in pull request #4398.

N-03 Contracts Are Not abstract

With the goal of extensibility and customization, all contracts within the library, apart from

some special examples, should be marked as abstract , so that users consciously inherit

from them even if they don't include any custom implementation. However, there are still some

contracts that are not marked as abstract , but should be. Some examples include the

ERC20 and ERC1155Holder contracts.

Consider reviewing the entire codebase and marking all necessary definitions as abstract .

Update: Resolved in pull request #4010.

N-04 EIP-3156 Inconsistency

The ERC20FlashMint contract is an implementation of the ERC-3156 extension. Following

the description of the EIP, the way in which the design was originally thought was by having an

external ERC-20 token that should have been transferred to the user and then pulled back from

the receiver plus an amount of fees.

The pull mechanism of payment is generally preferred over a push payment pattern and this is

the only reason why it has been adopted by the EIP. A subtle difference comes with the flash

mint variant of the EIP, represented by the in ERC20FlashMint contract. The difference is in

that the contract itself is the ERC-20 token used, and no external tokens or contracts are used.

While adopting such EIP, the intention to follow it strictly but with such subtle differences

created an inconsistency.

Given the fact that there's no need to pull tokens from the receiver since the contract itself is

the token contract, instead of a pull payment pattern, internal functions are used directly. This

means that the need to approve an allowance beforehand and then spend such allowance is a

useless design that only wastes gas. The only reason that justifies such a sub-optimal pattern

is given by the fact that making a useless approval and subsequent spend allowance would

allow covering either for a flash loan or a flash mint, without worrying about which one is the

specific implementation of the interacting contract.

Consider either removing the need to approve and then spend the allowance or documenting

why it has been maintained despite not being necessary. On a side note, consider creating a

FlashLoan contract that adheres completely to the flash loan use case (not flash mint),

Contracts 5.0 Release − Notes & Additional Information − 39

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398/files
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/utils/ERC1155Holder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4010
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol
https://eips.ethereum.org/EIPS/eip-3156#automatic-approvals
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L121-L124
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L90
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20FlashMint.sol#L119

having an external token contract and a pull payment mechanism to retrieve flash-loaned

funds. This new contract together with the already existing ERC20FlashMint should be

complementary to each other, covering all use cases.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We see good reasons to preserve the current behavior:

1) The reference implementation for FlashMint in ERC-3156 implements the same

behavior.

2) Contracts that use the flashLoan function may use both FlashMint and

FlashLoan contracts.

These contracts will want to treat both uniformly, for simplicity and also because the EIP

doesn't give means to distinguish between them. FlashLoan contracts need the

allowance, and they will approve when interacting with FlashMint too. If they do that,

it seems better to take from the allowance rather than leave the allowance unused

because it could open up attack vectors.

N-05 Missing Interface

The IERC20Permit interface defines the nonces getter definition, while in reality, it should

extend from a non-existing INonces interface.

Consider creating an INonces interface, and making Nonces and IERC20Permit extend

from it.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We have decided to keep the current structure to avoid introducing a new interface, and

because it mirrors the interface defined in EIP-2612.

N-06 Missing Or Incorrect Docstrings - Phase 1

Throughout the codebase, there are instances where docstrings are missing, incorrect or can

benefit from a rephrase:

Docstrings in line 71 of the ERC1155 contract say that it is a requirement for the

address to not be the zero address, but this is not enforced.

•

Contracts 5.0 Release − Notes & Additional Information − 40

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/IERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/IERC20Permit.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L71

The uri function of the ERC1155 contract ignores the unnamed parameter, which

might be specified in the docstrings too.

The _asSingletonArrays function has an uncommented assembly block, consider

clarifying each line of assembly instructions. Moreover, the function itself has no

docstrings at all.

The _safeBatchTransferFrom function docstrings lack the requirement for ids and

amounts lengths to be equal.

The _mintBatch function docstrings don't specify that to can't be the zero address.

The _burnBatch function docstrings don't inherit the same requirements of the

equivalent _burn function.

The acceptances checks miss any sort of docstrings, that might need to be inherited

from IERC1155Receiver .

The docstrings of the ERC1155Pausable mention that if some don't extend from it, the

contract will be unpausable. It should also be stated that the contract will not be

pausable at all.

Line 80 of the IERC1155 has double quotes around "account".

The ERC1155InsufficientBalance error definition lacks @param docstrings for the

tokenId parameter.

Line 80 of the Address library says that customRevert must be a reverting function,

but this is not true, and it's not enforced.

The decreaseAllowance function should specify that it doesn't protect from having

the spender front-running any attempt to decrease the allowance.

increaseAllowance and decreaseAllowance are described to be a safe way to

avoid double-spending when using approve . However it does not inform that the

spender can still spend the entire allowance by front-running any attempt of allowance

reduction. Consider adding some clarification in the docstrings of the

decreaseAllowance function.

Docstrings in line 14 of Checkpoints say "Checkpoints.History" when it should be

"Checkpoints.Trace224".

key values of Checkpoints library should be never accepted as direct user input. If

this happens anyone can disable the library by setting a key == type(uint32).max

then any _insert call will revert. This should be clearly stated in the docstrings, since

it is important to know when it comes to using and integrating with it.

The nonces function of the Nonces contract should be described as the "next unused

nonce" and not as the current nonce.

Consider reviewing the entire codebase for more occurrences and fixing the suggested ones.

Update: Resolved in pull request #4398.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 41

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L408
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L408
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L227-L236
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L227-L236
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L295-L305
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L295-L305
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L331-L339
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L331-L339
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L360-L406
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Pausable.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L122
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L122
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Address.sol#L80
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L202
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L202
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L182
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L182
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L202
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L202
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L14
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398

N-07 Naming Suggestions - Phase 1

To favor explicitness and readability, several parts of the contracts may benefit from better

naming. Consider making the following changes:

The ERC1155InsufficientApprovalForAll name suggests that the allowance is

not "sufficient" in quantity but the approval function doesn't take quantities into account.

Consider renaming to something like ERC1155LackOfApprovalForAll .

The onERC1155Received and onERC1155BatchReceived functions have a

parameter named value(s) in the interface definition, but what is passed in when

called is amount(s) in the actual ERC1155 implementation. Consider making them

consistent and changing value(s) to amount(s) .

Update: Resolved in pull request #4381 and pull request #4398. The OpenZeppelin Contracts

team stated:

Renamed the error. For "amount" vs "value", we used the opportunity to align across all

the ERC-20 and ERC-1155 contracts to use "value" everywhere.

N-08 Outdated Solidity Version

The majority of contracts use a pragma Solidity version ^0.8.19 while the 0.8.20 version

is already out. Consider whether it is worth updating the version across the codebase.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We are using 0.8.19 because there are no new language features in 0.8.20. We will

consider using 0.8.21 once it comes out.

N-09 Uncommented Sensitive Operation

The ERC20 and ERC1155Supply _update function relies on built-in overflow checks in

Solidity to increment supply when minting new tokens. This will in general protect from

overflowing.

However, it's not written anywhere in the docstrings that this is an extremely important

assumption that should never change. If this was done inside an unchecked box instead, the

effects might spread in many extension contracts. The main reason is that all other calculations

rely on that operation to not overflow, to save gas and use unchecked boxes anywhere else

instead.

•

•

Contracts 5.0 Release − Notes & Additional Information − 42

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L141
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L141
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol#L27
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/IERC1155Receiver.sol#L51
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L392
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L369
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4381
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L243

Since such an operation has no comments at all and it is of utter importance, consider whether

this should be specified in the docstrings since an eventual overflow might have a catastrophic

impact even in the most basic contracts like ERC20Capped .

Update: Resolved in pull request #4398.

N-10 Unused Custom Errors

The ERC1155InvalidOwner custom error of the ERC1155 contract is not used. Moreover, it

is misplaced, since all custom errors are defined within the contracts/interfaces/

draft-IERC6093.sol file. The same happens with the ERC1155InvalidApprover

custom error, which is not used anywhere in the codebase.

Consider removing unused custom errors and to consolidate all custom error definitions within

the same file.

Update: Partially resolved in pull request #4261. The OpenZeppelin Contracts team stated:

ERC1155InvalidOwner was removed. ERC1155InvalidApprover is not used,

but it is defined in the EIP so we are keeping it.

N-11 Unused or Duplicated Imports And
Extensions - Phase 1

In the codebase, there are cases in which contracts might have a shorter inheritance chain or

where imports are either unused or duplicated.

In Checkpoints.sol the import SafeCast is unused and could be removed.

The ERC1155 contract extends from IERC1155 and IERC1155MetadataURI but the

latter already extends from the former. Similarly, some imports are already present in

parent contracts.

Consider removing unused or duplicated imports and/or extensions to improve the overall

clarity and readability of the codebase.

Update: Partially resolved in pull request #4398. Regarding the second point, the

OpenZeppelin Contracts team stated:

•

•

Contracts 5.0 Release − Notes & Additional Information − 43

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L147
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/interfaces/draft-IERC6093.sol#L147
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4261
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L8
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol#L8
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4398

We decided to keep the interface. The main reason is that seeing it there allows us to be

confident that the contract is actually correctly implementing the ERC-1155 interface,

without knowing that IERC1155MetadataURI extends IERC1155 .

N-12 Outdated Version in Docstrings

Many contracts don't have the docstrings updated with the latest version. An example is the

ERC1155 contract that mentions v4.9 in the docstrings titles.

Consider updating all of the codebase's docstrings to reflect the latest version of the contracts

that have been modified in the latest release.

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

These are automatically updated with releases.

N-13 Event Definition Improvement Suggestions

The AdminChanged event of ERC1967Utils does not index its parameters, while the

Upgraded and BeaconUpgraded events do not emit the old implementation's values.

Consider indexing event parameters and emitting old values whenever a change occurs in the

state.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

ERC-1967 defines the event like that and is final. The suggested change can't be made.

N-14 Code Style Suggestions - Phase 1

Throughout the codebase, many functions use the nested conditionals coding style, which

affects readability. For instance:

In TransparentUpgradeableProxy , the _fallback function

In Address , the verifyCallResultFromTarget function

In ERC2771Forwarder , the _execute function

Consider refactoring the aforementioned functions following the guard clauses

technique. An example is shown below for the aforementioned _execute method.

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 44

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/ERC1155.sol#L2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L30
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84-L92
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84-L92
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L174-L185
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol#L174-L185
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L239-L261
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L239-L261
https://maximegel.medium.com/what-are-guard-clauses-and-how-to-use-them-350c8f1b6fd2#:~:text=A%20guard%20clause%20is%20a,deeper%20and%20less%20meaningful%20error.
https://maximegel.medium.com/what-are-guard-clauses-and-how-to-use-them-350c8f1b6fd2#:~:text=A%20guard%20clause%20is%20a,deeper%20and%20less%20meaningful%20error.

function _execute(

 ForwardRequestData calldata request,

 bool skipInvalid // note: flipped relative to `requireValidRequest`

) internal virtual returns (bool success) {

 // note: could also be refactored into `_handleInvalidRequest(ForwardRequestData

calldata request, bool skipInvalid)`

 if (!signerMatch || !alive) {

 if (skipInvalid) {

 return;

 }

 if (!alive) {

 revert ERC2771ForwarderExpiredRequest(request.deadline);

 }

 if (!signerMatch) { // redundant if, but more readable (optimized away by

compiler?)

 revert ERC2771ForwarderInvalidSigner(signer, request.from);

 }

 }

 // Nonce should be used before the call to prevent reusing by reentrancy

 uint256 currentNonce = _useNonce(signer);

 (success,) = request.to.call{gas: request.gas, value: request.value}(

 abi.encodePacked(request.data, request.from)

);

 _checkForwardedGas(gasleft(), request);

 emit ExecutedForwardRequest(signer, currentNonce, success);

}

Update: Partially resolved in pull request #4502 at commit 7263524, at commit 3d8baba. The

OpenZeppelin Contracts team stated:

We agree the guard clauses technique is valuable so we prioritized errors in both

Address and TransparentUpgradeableProxy . However, we also consider using

braces is less error-prone and may prevent unintentional issues so we kept such syntax.

Note that the recommendation for ERC2771Context does not replicate the same

behavior.

N-15 Inadequate Documentation for Reverting
Payable Upgrades with Empty Data

Several upgrade methods within the contracts are payable, including the ProxyAdmin and its

target in TransparentUpgradeableProxy , the UUPSUpgradeable , and the

ERC1967Proxy constructor.

Contracts 5.0 Release − Notes & Additional Information − 45

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/72635240430ea1a1a17b90bc68de882963b97008
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/3d8babad048f820b1f8cb314ffde842a9603d494
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L38-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L38-L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L83-L85
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L83-L85
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L22

However, these methods will revert in the ERC1967Utils.upgradeToAndCall if the data

parameter is empty, yet msg.value is not zero. This occurs because even if the

implementation can receive ETH, this cannot be guaranteed, since it will not be called due to

the empty data input.

Consider adding inline documentation that explains why this combination of inputs is

unsupported. Additionally, provide guidance on the best approach a project can use to support

these inputs if they are required for any reason.

Update: Resolved in pull request #4382 at commit 121be5d. The OpenZeppelin Contracts

team stated:

Documentation was added in the NatSpec of the

ERC1967Utils.upgradeToAndCall and

ERC1967Utils.upgradeBeaconToAndCall functions.

N-16 Incompatibility of VestingWallet with
Rebasing Tokens

The VestingWallet contract may not function as expected with rebasing tokens. In such

tokens, the token's balance and total supply can change without any interaction with the

VestingWallet contract, due to the rebasing mechanism.

Since the _released and _erc20released variables remain static between their updates

(1, 2), an external change in the contract's token balance due to a rebase, can result in the

vesting schedule speeding up or slowing down, contrary to the defined durationSeconds .

Consider documenting this incompatibility to ensure users are aware that this contract may not

function correctly with ERC-20 tokens that exhibit atypical balance behaviors, such as rebasing

tokens.

Update: Resolved in pull request #4502 at commit 6689060. The OpenZeppelin Contracts

team stated:

We added documentation for rebasing tokens.

Contracts 5.0 Release − Notes & Additional Information − 46

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L89
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L89
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4382
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/121be5dd09caa2f7ce731f0806b0e14761023bd6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L119
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol#L131
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/6689060500fd53c4577ff441693962725b39fe36

N-17 Lack of Event Emission - Phase 2

Throughout the codebase there are some state changes and calls that are not accompanied by

event emission:

The ProxyAdmin contract does not emit an event during the upgradeAndCall

function execution. Although the proxy contract will emit an Upgraded event, it will do

so in its own context. Emitting a separate upgrade event in the context of the admin

contract would simplify off-chain upgrade tracking, especially in systems where a single

admin controls multiple proxies.

The UpgradeableBeacon 's constructor updates the implementation without emitting

an event. This happens because the Upgraded event is not emitted during the

execution of the internal _setImplementation function. Consider relocating the

event emission to the _setImplementation function to ensure it is triggered in both

cases.

Consider ensuring events are emitted in these cases.

Update: Partially resolved in pull request #4502 at commit 687b805. The OpenZeppelin

Contracts team stated:

Fixed by emitting the Upgraded event in UpgradeableBeacon's constructor. However,

an extra event wasn't added to ProxyAdmin in order to keep it as simple as possible,

which is its intended design.

N-18 Lack of Inclusion of a "Vesting Cliff"
Feature

A "vesting cliff" is a prevalent feature in vesting schedules. It defines a date before which no

tokens can be released, despite the linear progression of the vesting schedule prior to that

date. Even though projects can extend the contract to include this functionality, given its

prevalence in vesting schedules, it would be beneficial to incorporate it into the default

contract. This addition would help reduce potential implementation errors and enhance the

utility of the default contract.

Consider adding a cliffTimestamp input to the constructor. This timestamp could be used

in a cliff() view, whose value should not exceed the end() time. In the

_vestingSchedule method, if the timestamp is earlier than the cliff() , the

totalAllocation should be set to 0.

•

•

Contracts 5.0 Release − Notes & Additional Information − 47

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L38-L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L31
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L54
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/687b80515b16138d11e79eb2d9503fb1ae8defec

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

This variant will be considered for future development. We consider it an easy

implementation to be built on top of the VestingWallet.

N-19 Missing Or Incorrect Docstrings - Phase 2

Throughout the codebase, there are instances where docstrings are missing, incorrect or can

benefit from a rephrase:

In the ERC1967Utils library, the comments for the internal constants

IMPLEMENTATION_SLOT, ADMIN_SLOT, and BEACON_SLOT mention that they are

"validated in the constructor". However, no constructor occurrence could be found

where the aforementioned internal constants are validated.

In the IBeacon interface, the following comment assumes that the BeaconProxy will

check that the implementation's address is a contract. However, this is not checked in

BeaconProxy but rather in UpgradeableBeacon while setting the implementation.

The definition's syntax of the BEACON_SLOT differs from the definitions' syntaxes of

IMPLEMENTATION_SLOT and ADMIN_SLOT.

Throughout the scope (and codebase), events that refer to standard EIP events are

mentioned as "Emits an {IERCxxx-Eventname} event" in the comments. In some other

places, standard EIP events are mentioned as "Emits an {Eventname}" instead. For

example, in the comments for upgradeToAndCall and upgradeToAndCallUUPS, the

declaration of the Upgraded event is not consistent.

The UUPSUpgradeable compatibility check should specify in the docstrings that it is

merely a sanity check and that more robust rollback tests are possible but not

implemented because of increased complexity, code size and gas consumption.

The VestingWallet docstrings should specify that the beneficiary is able to modulate

the behavior of the linear vesting into a curve by re-depositing into the vesting contract

the amount released for both ETH and tokens. Moreover, it should prove the calculations

starting from an invariant. An example:

/**

 * Suggested documentation for `releasable()`

 *

 * The contract's invariant is `total-withdrawal / total-deposit <= vesting-ratio`

where:

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 48

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L33-L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L94-L96
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L133-L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/IBeacon.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/IBeacon.sol#L13C8-L13C64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol#L64
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L134
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L34-L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L95-L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L91
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/finance/VestingWallet.sol

 * - `vesting-ratio` is 0 before vesting period start, and during the vesting period

 * is linear in the vesting duration (to a maximum of 100%). For example 50%

 * ratio after 50% of duration.

 * - `total-deposits` is the sum of the contract's balance (regardless of who

supplied it and when),

 * and the already `released` funds (because the release method is the only way

 * that funds can leave this contract).

 * - `total-withdrawal` is the sum of already released funds (stored in `released`),

 * plus the currently `releasable`. Again, because the release method is the only

way

 * that funds can leave this contract.

 *

 * From the above we can translate the invariant to:

 * `(released + releasable) / (released + contract-balance) <= vesting-ratio`.

 * Extracting maximum `releasable` (assuming equality):

 * `releasable = (contract-balance + released) * vesting-ratio - released`

 *

 * We can call the first term on the right side `vested-amount` and calculate it

separately

 * in `vestedAmount()` to make it available in a separate view.

 * /

The equal function of Strings should specify that the function is not able to

distinguish same-length input hash collisions.

Functions that do delegateCall s in the Address library should have a warning

stating that the call potentially modifies the state of the caller contract.

The _checkNonPayable misses useful docstrings.

being impossible in ProxyAdmin 's and UUPSUpgradeable 's docstrings should

be making it impossible .

Consider reviewing the entire codebase for more occurrences and fixing the suggested ones.

Update: Partially resolved in pull request #4502 at commit 60329ea. The OpenZeppelin

Contracts team stated:

Some of the suggestions were implemented except for those that required more

discussion.

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 49

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Strings.sol#L90
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Strings.sol#L90
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L182
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L182
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L19C66-L19C82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L19C66-L19C82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L28C66-L28C82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L28C66-L28C82
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/60329ea7fe656a330db783cc7ba046acaaa0e045

N-20 Naming Suggestions - Phase 2

Throughout the codebase, there are naming choices that impact readability or are inconsistent.

Some suggested improvements include:

implementation is the generally adopted name for the logic contract behind a proxy.

However, in the ERC1967Proxy and TransparentUpgradeableProxy constructors

it is called _logic instead. Consider always using implementation .

The constant _SYMBOLS can refer to any symbol. Consider renaming it to

_HEX_DIGITS to be more precise.

The UpgradeableBeacon contract is not per se upgradeable, and instead administers

upgradeability for BeaconProxy contracts. Consider mimicking the ProxyAdmin

contract which administers upgradeability for TransparentUpgradeableProxy and

use BeaconProxyAdmin instead. Alternatively, use ImplementationBeacon to

describe the functionality directly.

alive is an atypical name and is confusing. Some possible alternatives include

expired (flipped value), nonExpired , or beforeDeadline .

requireValidRequest is confusing since it can imply that invalid calls are processed

despite being invalid. Consider flipping the value and using skipInvalidRequests .

Consider incorporating a clearer distinction between the variables and methods in

VestingWallet that are duplicated between ETH and ERC-20 cases by suffixing them

with ETH , and ERC20 or Token .

Update: Partially resolved in pull request #4502 at commit dee9963. The OpenZeppelin

Contracts team stated:

Some of the suggestions were implemented except for those that require more

discussion.

N-21 Trusted Forwarder Address Lacks External
Visibility

ERC2771Context stores the trusted forwarder address as an immutable variable and does

not emit an event. As a consequence, querying for the address would be difficult off-chain and

impossible on-chain.

Consider emitting an event when setting the forwarder address, and providing an external view

to access it.

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 50

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Utils.sol#L82
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L74
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L74
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/audit/2023-07-10/contracts/utils/Strings.sol#L13C60-L13C60
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/audit/2023-07-10/contracts/utils/Strings.sol#L13C60-L13C60
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/beacon/UpgradeableBeacon.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L239C13-L239C32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Forwarder.sol#L239C13-L239C32
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/dee9963a03f587e9080a872063ba02039f97b99c
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L17

Update: Resolved in pull request #4502 at commit 1164c51. The OpenZeppelin Contracts

team stated:

Addressed by adding a virtual getter, making it opt-in to extend any trusted forwarder

custom behavior.

N-22 Unused Named Return Variables - Phase 2

The impl named return variable of the ERC1967Proxy is unused. Similarly, in

ERC2771Context the sender variable of the _msgSender function is unused in the else

branch.

In both cases, consider either removing the named parameter or making use of it.

Update: Resolved in pull request #4502 at commit 58546a1. The OpenZeppelin Contracts team

stated:

The _impl return value name was removed. The sender case was kept because it's

used and we consider it has better readability.

N-23 Code Style Suggestions - Phase 3

The check in Initializable.initializer is very complex and difficult to read, which

makes it unnecessarily hard to maintain and audit. The code can be improved by documenting

the logic of the check and splitting the conditional logic into multiple temporary variables that

are appropriately named. For example, consider refactoring in the style of the code below:

// first call is allowed

bool firstCall = (isTopLevelCall && _initialized == 0);

// calls at construction time are allowed to allow multiple constructors to run their

inits.

// the version check ensures the version number cannot be reduced

// in the case version > 1 was already set by `reinitializer` or `_disableInitializers`

bool callDuringConstruction = (address(this).code.length == 0 && _initialized == 1);

if (!firstCall && !callDuringConstruction) {

 revert AlreadyInitialized();

}

Update: Resolved in pull request #4576. The OpenZeppelin Contracts team stated:

Refactored using intermediate variables and added explanatory comment.

Contracts 5.0 Release − Notes & Additional Information − 51

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/1164c5157d477d35ebfb6231819d9624bf401436
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/ERC1967/ERC1967Proxy.sol#L33
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/58546a17c4e78aedf55aa3ae49e81d421bdca4a6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/proxy/utils/Initializable.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/proxy/utils/Initializable.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4576

N-24 Some ERC-721 Features Might Be Atomically
Reset

The ERC-721 token has many extensions and among them, there are the royalties and the

URI storage ones. If a particular tokenId is first burned and then re-minted, that specific

token will have all of these features reset, the custom URI and royalties information but also the

specific approvals.

Consider whether this should be documented so that users know the potential mechanisms

involved.

Notice that ERC721Wrapper offers a withdrawTo and depositFor flow that can be

called within the same transaction and will effectively burn and re-mint the same wrapped

tokenId achieving the mentioned reset.

Consider documenting that the wrapper can be used in an atomic way, especially since the

receiver of any wrapped token can be a contract on itself and re-enter the wrapper contract on

the onERC721Received hook.

Update: Resolved in pull request #4561. The OpenZeppelin Contracts team stated:

We don't think atomic reset is necessarily a problem, but agree that allowing the user to

reset values is potentially a problem, so we're removing it.

N-25 Missing or Incorrect Docstrings - Phase 3

Throughout the codebase, there are instances where docstrings are missing, incorrect or can

benefit from a rephrase:

The burn function docstrings of the ERC721Burnable contract should clarify why the

internal _burn function is not used and make clear when it should be used.

The transferFrom function of the ERC721 contract that refers to the _isAuthorized

function as "_isApprove". Similarly for the comment for the _update function of the

ERC721Burnable contract.

hash should be messageHash in MessageHashUtils contract.

ECDSA.tryRecover return values description is out of date.

In the ERC721Consecutive contract some advisory docstrings refer to the

_beforeTokenTransfer and _afterTokenTransfer hooks which have been

abandoned in the latest version.

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 52

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Royalty.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721URIStorage.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721URIStorage.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Royalty.sol#L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L257
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Wrapper.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Wrapper.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4561
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Burnable.sol#L21
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L149
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L197
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L197
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Burnable.sol#L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L23C19-L23C23
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L23C19-L23C23
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/ECDSA.sol#L36-L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/ECDSA.sol#L36-L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Consecutive.sol#L22-L28

The WARNING docstring for the _checkAuthorized function in the ERC721 contract

unclearly suggests that the _isAuthorized function checks whether the owner

address is the actual token owner, while this is not true.

The onlyRole and _checkRole docstrings in AccessControl describe the regular

expression format of the previous revert reason string, which has been replaced with a

custom error.

The documentation of Initializable 's initializer is misleading since it

mentions that the function protected by it can only be invoked once, or if nested within

the constructor. However, the methods protected by it can be invoked any number of

times during construction, and do not have to be nested. An example contract below is

supported:

 contract MultipleInits is Initializable {

 constructor() initializer {

 initialize();

 initialize();

 }

 function initialize() public initializer {}

It appears that this is a known edge case since the contract documentation warns about

multiple calls to initializer -protected methods. Consider clarifying the method

documentation to prevent confusion regarding the allowed use cases and the lack of

protection from multiple initializations.

Consider reviewing the entire codebase for more occurrences and fixing the suggested ones.

Update: Partially resolved in pull request #4581. The burn function of the ERC721Burnable

extension contract makes no comments about why the internal _burn function is not used.

N-26 Lack of Event Emission - Phase 3

In the ERC2981 contract, used within ERC721Royalty , there are no events emitted every

time a custom or default royalty's information is being reset.

Consider emitting events every time a sensitive storage action is performed.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

We are following ERC-2981, which does not specify any events. We don't want to add

proprietary events that are not a part of the standard.

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 53

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L207-L208
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L207-L208
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L195
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/AccessControl.sol#L63-L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/AccessControl.sol#L99-L101
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5ae630684a0f57de400ef69499addab4c32ac8fb/contracts/proxy/utils/Initializable.sol#L83-L87
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5ae630684a0f57de400ef69499addab4c32ac8fb/contracts/proxy/utils/Initializable.sol#L83-L87
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/5ae630684a0f57de400ef69499addab4c32ac8fb/contracts/proxy/utils/Initializable.sol#L36-L37
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4581
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/common/ERC2981.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/common/ERC2981.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Royalty.sol#L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Royalty.sol#L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/common/ERC2981.sol#L135
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/common/ERC2981.sol#L107

N-27 Repeated Code

In the ERC721 contract there are two places in which code can be optimized and reused with

little refactoring.

The ownerOf function could make use of _requireMinted logic to use the same

logic.

The auth parameter is checked to not be the zero address two times, one inside the

_update function and one inside the _isAuthorized function, called within

_update execution exclusively. If the _isAuthorized function is meant to be

triggered exclusively within the _update one, consider removing the second check.

Consider consolidating the logic in less code and reusing the same pattern as much as

possible.

Update: Partially resolved in pull request #4566. The OpenZeppelin Contracts team stated:

Partially fixed only for the ERC721 item, with a rename of _requireMinted to

_requireOwned . For _update we have decided not to accept the suggestion. We

want _isAuthorized to be correct when called directly, and not just through

_update . For correct semantics we need to check that spender is not zero,

otherwise the function returns true when the token has no approved address.

N-28 Hardcoded Magic Constant

In the ERC721URIStorage contract, there is the 0x49064906 hardcoded value.

Consider adding a comment specifying where the hardcoded magic constant comes from and

defining it in a constant variable instead.

Update: Resolved in pull request #4560.

N-29 _setTokenURI Does Not Allow Setting URI
for Non-Existing Tokens

The _setTokenURI function of the ERC721URIStorage contract doesn't allow setting the

URI for non-existent tokenId .

This prohibits using this contract with a common use case in which tokenId metadata are

set even before minting the corresponding token.

•

•

Contracts 5.0 Release − Notes & Additional Information − 54

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L71
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L71
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L433
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L433
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L251
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L251
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L251
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L199
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L199
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4566
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4560
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721URIStorage.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721URIStorage.sol#L57

Consider lifting this restriction to not limit the library's flexibility.

Update: Resolved in pull request #4559.

N-30 Default Handling Contract of the
DEFAULT_ADMIN_ROLE Is Complex

The AccessControl contract is the basic building block for constructing role-based access

control mechanisms. Each role may have its own administrator entity. However, the

administrator account of the DEFAULT_ADMIN_ROLE serves as the default administrator for

all roles for which a specific administrator is not defined. Thus the DEFAULT_ADMIN_ROLE

comes with the great power that handles other roles, essentially granting or revoking access

from members.

The AccessControl contract makes no assumptions and provides no special rules for the

owner of the DEFAULT_ADMIN_ROLE . In essence, users are encouraged to use the

AccessControlDefaultAdminRules contract as an extension to the basic

AccessControl , which defines timelock-like procedures for the sensitive operations of the

default admin. However, the advanced security of the AccessControlDefaultAdminRules

contract comes with a certain level of complexity and could be erroneously used or modified

by non-sophisticated development teams.

To assist developers with the somewhat complex management of the

DEFAULT_ADMIN_ROLE , consider providing more extensive documentation for the

AccessControlDefaltAdminRules contract, explaining the purpose and mechanics of the

two delay mechanisms, along with example use cases. Also consider expanding the existing

docstring of the AccessControl contract to provide more specifics about the advanced

security guarantees provided by AccessControlDefaultAdminRules , such as the delay

mechanisms, to help development teams choose which contract is most suitable for their

projects.

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

We will address this with documentation in the near future.

N-31 Unused Named Return Variables - Phase 3

The named return variable digest is unused in MessageHashUtils 's

toEthSignedMessageHash(bytes memory message) and

Contracts 5.0 Release − Notes & Additional Information − 55

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4559
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol#L23-L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L48

toDataWithIntendedValidatorHash functions. Similarly, in the

AccessControlDefaultAdminRules contract, the return variables newAdmin ,

schedule of the pendingDefaultAdmin function and return variables newDelay ,

schedule of the pendingDefaultAdminDelay function are unused.

For consistency with the rest of the codebase, consider assigning values to these return

variables instead of explicitly returning. Alternatively, consider removing the named variables

from the signatures of the methods in these cases.

Update: Partially resolved in pull request #4573. The OpenZeppelin Contracts team stated:

Removed some, but in the case of multiple return values we kept the names even if

unused, because we think they help to understand what each return value is.

N-32 Allowance and Approval Inconsistencies -
Phase 3

The ERC721 contract allows any user to approve the address(0) as spender. This is

inconsistent with what is done in ERC20 . Disallowing such approvals would also be in

agreement with the relevant restriction for setApprovalForAll which is followed both in

ERC-1155 and ERC-721.

Consider being consistent with all kinds of tokens in how approvals are managed.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

In ERC721, approve of address(0) is used to remove the currently approved

address.

N-33 Confusing Revert Messages Due to
Underflow

If both leaves and proof are empty arrays in processMultiProof or

processMultiProofCalldata , the respective length checks (1, 2) will revert due to

underflow.

Consider checking for this condition, and emitting the same

MerkleProofInvalidMultiproof in this case.

Update: Resolved in pull request #4564.

Contracts 5.0 Release − Notes & Additional Information − 56

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L61C14-L66
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MessageHashUtils.sol#L61C14-L66
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol#L177-L178
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol#L177-L178
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol#L192-L194
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/access/extensions/AccessControlDefaultAdminRules.sol#L192-L194
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4573
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC20/ERC20.sol#L342
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC20/ERC20.sol#L342
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MerkleProof.sol#L121
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/cryptography/MerkleProof.sol#L177
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4564

N-34 Missing or Incorrect Docstrings - Phase 4

Throughout the codebase, there are instances where docstrings are missing, incorrect or can

benefit from a rephrase:

In AccessManaged.sol :

The _checkCanCall function contains a confusingly named variable allowed , which

is not purely a yes/no indicator of whether the caller is allowed to call the target function.

A call may still be able to execute even if !allowed is true. Consider adding a

comment that clarifies this behavior.

In AccessManager.sol :

The comments for the Access data structure refer to an onlyGroup modifier which is

not present in the codebase.

The _canCallExtended function returns a (bool, uint32) tuple but has no

documentation that explains how to interpret these values, and determining their

meaning is not trivial.

The _getAdminRestrictions function returns a (bool, uint64, uint32) tuple

but has no documentation that explains how to interpret these values, and determining

their meaning is not trivial.

There is a stale docstring which refers to three possible modes (open, custom,

closed) while no such categorization is implemented.

The docstring of the cancel function should mention that in addition to the proposer

and guardian, a global administrator is also allowed to call it.

The renounceGroup , revokeGroup , and _revokeGroup docstrings all say "Emits

a {GroupRevoked} event" instead of "May emit". If the targeted account is not a member

of the group, the shared function _revokeGroup will return before emitting the

GroupRevoked event.

The docstring of setClassFunctionGroup says it emits a

"FunctionAllowedGroupUpdated" event. This should be changed to

"ClassFunctionGroupUpdated".

The docstring of _setClassFunctionGroup says this function is the internal version

of "setFunctionAllowedGroup". This should be changed to "setClassFunctionGroup".

The docstring of _setClassFunctioNGroup says it emits a

"FunctionAllowedGroupUpdated" event. THis should be changed to

"ClassFunctionGroupUpdated".

•

•

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 57

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManaged.sol#L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManaged.sol#L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L65
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L799
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L799
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L759
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L759
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L30-L32
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L687
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L687
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L699
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L454
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L454
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L467
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L467
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L469
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L469

The docstring of setClassAdminDelay says it emits a

"FunctionAllowedGroupUpdated" event. This should be changed to

"ClassAdminDelayUpdated".

The _checkAuthorized function contains a confusingly named variable allowed ,

which is not purely a yes/no indicator of whether or not the call is authorized. A call may

still be allowed to execute even if !allowed is true. Consider adding a comment that

clarifies this behavior.

The AccessMode and Class structs are undocumented.

In EnumerableMap.sol :

An isolated comment refers to a non-existent data structure Uint256ToAddressMap ,

which has been renamed to UintToAddressMap .

In IAccessManaged.sol :

No documentation is present in this file for IAccessManaged interface and its

functions, events, and errors.

In IAccessManager.sol :

Except for three events, no other documentation is present in this file for the

IAccessManager interface and its functions, events, and errors.

In Time.sol :

The docstring for the type Delay describes it as 128 bits long, but its size is uint112 .

The docstring for the type Delay provides a visual representation of the packed values

inside the Delay type but puts them in the wrong order: the current value and

pending value labels should be swapped so that current value occupies the

least significant CCCCCCCC bits in the diagram.

Consider reviewing the entire codebase for more occurrences of missing and incorrect

documentation, and fixing the suggested ones.

Update: Partially resolved in pull request #4586, pull request #4581. No extra documentation

has been added to the IAccessManaged and IAccessManager interfaces.

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 58

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L484
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L484
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L745
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L745
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L54-L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L54-L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L81-L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L81-L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableMap.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L9-L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L67
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L67
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L58-L61
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4586
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4581

N-35 Refactor AccessManager Data Structures
to Reduce Design Complexity

The AccessManager contract organizes the access rights per each managed contract's

function selector. For this purpose, the following mappings and structs are used:

_contractMode mapping: Given a target contract address, returns an AccessMode

struct. AccessMode contains a classId and a boolean value denoting whether the

contract is "closed" or not.

_classes mapping: Given a class's id, returns a Class struct. Class contains a

mapping with the allowed group (groupId) per function selector and an adminDelay

value, which is a delay applied on some class-level administrative operations.

_groups mapping: Given a member group's id, returns a Group struct. Group

contains a mapping with the access details per member along with some other data.

Essentially, there are two intermediary structs (AccessMode and Class) involved with linking

a target contract to its member groups per function selector. While this distinction could help

batch some update operations for similar target contracts which share the same class of

access rules, it is unnecessary for the most common use cases. At the same time, this

distinction increases the conceptual complexity of the already complex AccessManager

contract.

Consider consolidating the AccessMode and Class structs into a single data structure that

eliminates the intermediate Class concept, in order to simplify the design and reduce the

conceptual complexity in regards to the configuration of the access management rules.

Update: Resolved in pull request #4562. The OpenZeppelin Contracts team stated:

Removed classes to simplify. Additionally renamed AccessMode to TargetConfig ,

and functions like getContractClass to getTargetClass to avoid the generic

"contract" concept.

N-36 Unused Variables

In the AccessManager contract, the _adminDelays variable is declared but never used.

Consider removing the unused variable for clarity and readability.

Update: Resolved in pull request #4565.

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 59

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L89-L91
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4562
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4565

N-37 Inconsistent Use of Named Return Variables
- Phase 4

Almost all functions in IAccessManager that return a value do not use named return

variables, but the canCall and getContractClass functions do use named values. The

canCall function in the IAuthority interface also returns a named value.

While inconsistent with the rest of the AccessManager codebase, these named return values

still provide valuable information to the reader. Consider removing the named values but

adding documentation that provides the same information in the functions' docstrings.

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

Guidelines and consistency for named return variables will be reviewed for a future

release.

N-38 Missing Zero Address Check in
AccessManager Constructor

The AccessManager constructor's job is to grant an initialAdmin address access to the

ADMIN_GROUP . However there is no check that ensures initialAdmin is not

address(0) , in which case the contract would be deployed without an admin role.

Attempting to correct this after the fact by calling the public grantGroup function would fail

because the function is protected by the onlyAuthorized modifier.

Consider checking that the initial administrator address is not address(0) upon the

contract's construction, in order to avoid the accidental deployment of contracts that cannot

be used.

Update: Resolved in pull request #4570.

N-39 Use of Custom Errors

The AccessManager contract uses custom errors in nearly all cases. In contrast, the

consumeScheduledOp function uses a require statement with no error string for

reverting.

To improve the consistency of the codebase, consider reverting with a custom error instead of

using require .

Contracts 5.0 Release − Notes & Additional Information − 60

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L57
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAuthority.sol#L12
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAuthority.sol#L12
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L109
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4570
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L660
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L660

Update: Resolved in pull request #4575. The OpenZeppelin Contracts team stated:

Added a custom error. Additionally, we changed the return value to be a bytes4 selector

in this same PR, out of caution due to potential selector clashes.

N-40 Code Style Suggestions - Phase 4

In the AccessManager contract, the grantGroup function has dual-purpose functionality: it

handles granting access to a new member of a group, and also updating an existing member's

delay value. In both cases, a GroupGranted event is emitted, even if the member has

already been granted access to the group.

To favor explicitness and simplify the code, consider adding a separate function to handle the

case of updating a member's delay value. In addition, consider emitting a separate event for

such updates.

Update: Resolved in pull request #4569. The OpenZeppelin Contracts team stated:

Here we prioritize fewer number of external functions and events because we think the

information can be accurately represented in events. A series of GroupGranted

events should be interpreted as observing that the account has the group with a specific

execution delay, starting at the since parameter. If there are multiple GroupGranted

events without any revokes, they represent updates to the execution delay. We added a

boolean to make it very explicit in each event whether the account is a new member in

the group, or just its execution delay was modified.

N-41 TODO Comments

The minSetback function in the AccessManager contract has a TODO comment that

states the setback value should be changed from 0 days to 1 day. Additionally, lines 122-123 in

the canCall docstring appear to be a TODO comment without a TODO tag.

Consider tracking these changes in the project's issue backlog.

Update: Resolved in pull request #4557. The OpenZeppelin Contracts team stated:

Fixed by setting the value to 5 days, except for grantGroup which we decided to

keep as 0 days for reasons explained in a comment.

Contracts 5.0 Release − Notes & Additional Information − 61

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4575
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L271
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L271
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4569
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L155
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L155
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L122-L123
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4557

N-42 Gas Optimization - Phase 4

In AccessManager 's setClassFunctionGroup function, the length of the selectors

array being iterated could be saved in a local variable that replaces selectors.length in

the for loop.

Consider making the above change to reduce gas consumption.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Since this array is in calldata we don't expect to see significant improvement so we are

not prioritizing it at the moment.

N-43 Typographical Errors - Phase 4

Consider addressing the following typographical errors:

In AccessManager.sol :

Line 48: Remove the extra space between "danger" and "associated".

Line 59: "This structures fit" should be "This structure fits".

Line 62: "are not available" should be "is not available" (or "group permission" should be

"group permissions").

Line 73: "grand" should be "grant".

Line 95: "transcient" should be "transient".

Line 126" "contract" should be "contracts".

Line 127: "call" should be "calls".

Line 208: "operation" should be "operations".

Line 208: "require" should be "requires".

Line 585: "restriction to that apply" should be "restrictions that apply".

In Time.sol :

Line 47: "so guarantees" should be "some guarantees".

Line 49: "is the delay" should be "if the delay".

Line 116: "after at a timepoint" should be "after a timepoint".

Update: Resolved in pull request #4571.

•

•

•

•

•

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 62

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L461
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L461
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L59
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L62
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L127
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L208
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L208
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L585
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L47
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/utils/types/Time.sol#L116
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4571

N-44 Mismatch Between Contract and Interface

The getSchedule function in AccessManager is defined as a view function in the

implementation, but in the IAccessManager interface, the view keyword is missing.

To avoid confusion, consider adding the view keyword to the getSchedule function's

definition in IAccessManager .

Update: Resolved in pull request #4558. The OpenZeppelin Contracts team stated:

Fixed by adding view modifier to getSchedule and two other functions that had the

same issue. We consider this more serious than a Note, because callers using the

interface would generate code that uses CALL instead of STATICCALL .

N-45 Naming Suggestions - Phase 4

To favor explicitness and readability, several parts of the contracts may benefit from better

naming. Consider making the following changes:

The EnumerableSet contract uses the word "index(es)" to name both indexes and

indexes incremented by one, which hinders the understanding of the code. Consider

renaming indexes incremented by one to "position".

The EnumerableSet contract refers to its elements as "value(s)". The word "value",

however, is generic and creates unnecessary confusion especially when

EnumerableMap comes into play (where the word "value" refers to the value in a key-

value pair). Consider using more specific words for set elements, such as "element" or

"member".

The AccessManager contract uses the word delay to name both the execution delay

of a group's member as well as the grant delay of a group. Renaming these two variables

to indicate their specific purpose would improve the contract's readability.

In the AccessManaged contract, the function _checkCanCall makes an external call

to the AuthorityUtils contract and names the boolean return variable "allowed".

However, even if allowed is false , this does not necessarily mean that the caller is

unauthorized, but rather that the operation falls under a delay. In this case, if the

operation has been scheduled and the delay duration has been completed then the

execution proceeds normally, following an unintuitive flow. Consider renaming the

variable "allowed" to a word that accurately denotes its content, such as

"immediatelyAllowed".

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 63

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L570
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L570
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/IAccessManager.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4558
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L93-L94
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/structs/EnumerableSet.sol#L84-L85
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L66
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L66
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L78
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManaged.sol#L105
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManaged.sol#L111-L115

Update: Partially resolved in pull request #4577, pull request #4562. The OpenZeppelin

Contracts team stated:

In AccessManager.canCall renamed the allowed return variable to immediate .

In EnumerableSet used position and index as suggested, but kept "values" after

seeing it is also used for sets in standard libraries in other ecosystems (C++, JavaScript).

N-46 Missing or Incorrect Docstrings - Phase 5

Throughout the codebase, there are instances where docstrings are missing, incorrect, or can

benefit from a rephrase:

In Governor.sol :

The docstring for the _governanceCall variable refers to _beforeExecute and

_afterExecute functions which do not exist in the codebase anymore.

The docstring for the _queueOperations function refers to the _queue function

which does not exist in the codebase.

"Any asset sent to the {Governor} will be inaccessible" could mention that assets can be

recovered through the relay function of the Governor contract.

The comment "ProposalCore is just one slot. We can load it from storage to stack with a

single sload" is wrong, as the struct actually takes two slots.

In TimelockController.sol :

The docstring for the isOperation function refers to a "Pending" state, which does

not exist. It should refer to the Waiting state instead.

In GovernorTimelockControl.sol :

There is a WARNING docstring pointing out some risks relevant to the sensitive access

roles of the TimelockController contract. However, the list of risks is neither

accurate nor complete. More specifically, the relay function of the Governor

contract is in fact secure against malicious role holders. Furthermore, apart from the risk

of malicious cancelers causing a DoS, it is also possible that malicious proposers and

executors create and execute arbitrary proposals bypassing the voting procedure.

Consider listing this risk as well. Consider also documenting that the

GovernorTimelockControl module can be used in two different secure ways:

TimelockController is set as the owner of the target contracts. Then, in order

to mitigate the risks mentioned above, a secure setup of TimelockController

is needed where the governor contract is the only admin and proposer.

•

•

•

•

•

•

◦

Contracts 5.0 Release − Notes & Additional Information − 64

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4577
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4562
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L51-L54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L51-L54
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L378
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L378
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L17-L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L138
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L168
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L168
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L20-L23
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L20-L23

GovernorTimelockControl is set as the owner of the target contracts. Then

the proposals should be structured in a way that all its actions are forwarded by

the relay function.

In GovernorTimelockAccess.sol :

Consider documenting the fact that scheduling the same call is prevented by the

AccessManager , while as a workaround it is recommended to append extra calldata,

which will function as a salt.

Consider correcting the docstring of the _detectExecutionRequirements function,

which appears to be outdated.

In GovernorVotesQuorumFraction.sol :

"If history is empty, fallback to old storage" is outdated because the fallback mechanism

has been removed.

In GovernorSettings.sol :

The comment "voting period must be at least one block long" in the

GovernorSettings contract is not accurate, since the period can also be in seconds.

In DoubleEndedQueue.sol :

The docstring for the Bytes32Deque struct refers to the use of signed integers for

indices, but the queue now uses unsigned values.

The docstring for the Byres32Deque struct states that indices lie in the range

[begin, end) , but due to intentional overflow/underflow that allows indices to wrap

around, _begin can be larger than _end (Example: push 1 element to the front of an

empty queue).

For consistency, the docstring for the pushBack function should contain the following

note: "Reverts with QueueFull if the queue is full".

For consistency, the docstring for the pushFront function should contain the following

note: "Reverts with QueueFull if the queue is full".

In MerkleProof.sol :

The _hashPair and _efficientHash functions are undocumented.

The _efficientHash function contains undocumented assembly code.

◦

•

•

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 65

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L252
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L252
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorVotesQuorumFraction.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorSettings.sol#L96
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L34-L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L34-L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L48
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L42-L43
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L42-L43
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L51-L53
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/structs/DoubleEndedQueue.sol#L79-L81
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L220-L224

In Initializable.sol :

The reinitializer modifier's docstring states: The comment "WARNING: setting the

version to 255 will prevent any future reinitialization" is incorrect. The version value used

to disable reinitialization has been changed from 255 to 2^64 - 1 .

Consider reviewing the entire codebase for more occurrences of missing and incorrect

documentation, and fixing the suggested ones.

Update: Resolved in pull request #4601.

N-47 Gas Optimizations - Phase 5

In the MerkleProof contract, the processProof and processProofCalldata

functions both access proof.length inside their respective for loops.

Consider saving this length value in a local variable prior to entering each loop.

Update: Acknowledged, not resolved. The OpenZeppelin Contracts team stated:

Since the arrays are in memory or calldata, reading the length is not so expensive and

this is not an optimization we're prioritizing.

N-48 Inconsistent Use of Named Return
Variables - Phase 5

With the exception of processMultiProof , processMultiProofCalldata , and

_efficientHash , the other functions in the MerkleProof contract do not use named

return variables.

While this approach to naming is inconsistent, these named return values still provide valuable

information to the reader. Consider removing the named values but adding documentation that

provides the same information in the docstrings of these functions.

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

Guidelines and consistency for named return variables will be reviewed for a future

release.

•

Contracts 5.0 Release − Notes & Additional Information − 66

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/proxy/utils/Initializable.sol#L137
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4601
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L49
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol

N-49 Unused Import - Phase 5

Within the GovernorTimelockCompound contract, the IERC165 import is not used.

Consider removing unused imports to improve the overall clarity and readability of the

codebase.

Update: Resolved in pull request #4590.

N-50 Inconsistent Solidity Version Used in
GovernorStorage

One of the 5.0 release changes is bumping the Solidity version to ^0.8.20 . This change has

been applied to all files except for GovernorStorage , which has version ^0.8.19 but

extends a ^0.8.20 -versioned Governor contract anyways.

Consider adapting the Solidity version to be consistent with the rest of the codebase.

Update: Resolved in pull request #4589.

N-51 Long Comment Lines

The style guide of the codebase appears to foresee a maximum line-width of 120 characters.

However, this is not to fully adhered to. For instance, see the comment on the

GovernorStorage contract.

Consider adhering to the ruler of 120 characters for the code to be more readable in split-

screen or diff-views.

Update: Resolved in pull request #4600.

N-52 Unused Named Return Variables - Phase 5

In the contract GovernornCountingSimple the named return variables againstVotes ,

forVotes and abstainVotes are unused in the proposalVotes function.

For consistency with the rest of the codebase, consider assigning values to these return

variables instead of explicitly returning. Alternatively, consider removing the named variables

from the signatures of the methods in these cases.

Contracts 5.0 Release − Notes & Additional Information − 67

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockCompound.sol#L8
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockCompound.sol#L8
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4590
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorStorage.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorStorage.sol#L3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L4
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4589
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorStorage.sol#L7-L14
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorStorage.sol#L7-L14
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4600
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorCountingSimple.sol#L50

Update: Acknowledged, will resolve. The OpenZeppelin Contracts team stated:

Guidelines and consistency for named return variables will be reviewed for a future

release.

N-53 Typographical Errors - Phase 5

Consider addressing the following typographical errors:

Throughout the codebase, there is an inconsistency between using the word "Canceled"

and "Cancelled". Consider adhering to American or British English.

In Governor.sol :

Line 19: "though" should be "through"

In TimelockController.sol :

Line 167: "correspond" should be "corresponds"

In GovernorTimelockControl.sol :

Line 114: "as already been queued" should be "has already been queued"

Line 38: "where the nonce is that which we get back from the manager" should be

"where the nonce is received from the manager"

Line 21: "powers that they must be trusted" should be "powers that must be trusted"

Line 114: "if it as already been queued" should be "if it has already been queued"

In Nonces.sol :

Line 16: "an the" should be "the" .

In MerkleProof.sol :

Line 16, Line 17, Line 69, Line 72, Line 86, Line 103, Line 115, Line 161: "merkle" should

be "Merkle"

Update: Resolved in pull request #4595.

•

•

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 68

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L19
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L167
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L114
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L37-L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L21
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L114-L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/Nonces.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L17
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L69
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L72
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L86
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L103
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L115
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/cryptography/MerkleProof.sol#L161
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4595

N-54 Naming Suggestions - Phase 5

To favor explicitness and readability, several parts of the contracts may benefit from better

naming. Consider making the following changes:

In Votes.sol , the delegates function only returns a single delegate address, and is

similarly named to the delegate function. Consider renaming delegates to

getDelegate .

In Votes.sol , an address that delegates its voting units is often referred to as an

account and an address receiving delegated votes is often referred to as a delegatee.

This naming consistency is also observed in the local variables for instance in the

delegate function. However there are some instances where a delegatee is referred to as

an account, for instance in getVotes , getPastVotes functions. Consider adopting this

naming convention consistently throughout the contract for clarity and readability.

Throughout the codebase state variables have a leading underscore, while function

parameters have no underscores. Consider sticking to this format for the name_

parameter of the Governor constructor.

The ProposalCore struct contains three variables that handle timepoints, namely

voteStart , voteDuration and eta . While the time unit of the first two is expected

to be decided by the clock() implementation, the eta value follows the block

timestamp as happens in the GovernorTimelockControl and

GovernorTimelockAccess extensions. As the timepoints are generally expected to

follow the same units within a module it is possible that the users misinterpret the value

of the timepoints. Consider renaming eta to etaSeconds or something similar to

underline the possible inconsistency and avoid false expectations.

The TimelockController implements the roles proposer, executor, and canceller.

The proposer role can be confusing in the context of governance contracts, which

involves making actual proposals. However, in the context of the

TimelockController , the proposer role is able to schedule calls, which could be a

successful proposal. Hence, calling the role scheduler would be more fitting.

Throughout the TimelockController contract, a single call's calldata is called

data , while a batch-call's calldata is called payloads . Consider adhering to

payload(s) to clarify that it is referring to same information.

In the ProposalCreated event the parameters voteStart and voteEnd indicate

the starting and ending timepoints of the voting period. However, the getter functions for

these values are named after proposalSnapshot and proposalDeadline

respectively. Consider adopting a consistent naming to avoid confusion.

Update: Partially resolved in pull request #4599. The OpenZeppelin Contracts team stated:

•

•

•

•

•

•

•

Contracts 5.0 Release − Notes & Additional Information − 69

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L133
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L76
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/utils/Votes.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L75
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L37
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorVotes.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorVotes.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockControl.sol#L93
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L164
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L164
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol#L25
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/IGovernor.sol#L117-L118
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/IGovernor.sol#L117-L118
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L186-L194
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4599

Renamed ProposalCore.eta to etaSeconds . Many of the other recommendations

would imply breaking changes with GovernorBravo or with OpenZeppelin Contracts 4.x

that we do not want to make. The other recommendations will be considered in the

future.

N-55 Extraneous Code

The following cases of extraneous code have been identified:

In the Governor contract, the validity of performing a specific action is usually checked

through the _validateStateBitmap function. However, this functionality is

duplicated within the _castVote function, instead of utilizing the

_validateStateBitmap function.

In the Nonces contract, the _useCheckedNonce function returns (assuming no revert)

the current nonce, which will always be equal to the input nonce . This eliminates the

need for the caller to ever check the return value. Consider removing the return value.

Consider addressing the above cases as suggested.

Update: Resolved in pull request #4588.

Client-Reported

CR-01 Inconsistent Use of Hooks

The ERC20 and ERC1155 contracts have been refactored to delete the

_beforeTokenTransfer and _afterTokenTransfer hooks in favour of a more robust

_update function. However, the _beforeFallback hook of the Proxy contract hasn't

been removed.

To favor consistency, consider removing the _beforeFallback hook.

Update: Resolved in pull request #4502 at commit 5a0e133. The OpenZeppelin Contracts team

stated:

The _beforeFallback hook is removed as suggested.

•

•

Contracts 5.0 Release − Client-Reported − 70

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L631
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/Governor.sol#L631
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/Nonces.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/utils/Nonces.sol#L39
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4588
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Proxy.sol#L77
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Proxy.sol#L77
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4502/commits/5a0e133df93f19e33d840891cc49d88f5327590a

CR-02 Wrong Visibility for a Public Constant

The UPGRADE_INTERFACE_VERSION variable has internal visibility. However, the

docstrings clearly explain that this constant should be queried from the outside of the

contract's context and so it should be public instead.

Consider changing the variable visibility to public .

Update: Resolved in pull request #4382 at commit 121be5d.

CR-03 Inconsistent nonce Enumeration in
AccessManager

In the AccessManager contract, scheduled operations are assigned a nonce value which is

sequentially incremented upon scheduling an operationId . This design allows

distinguishing active and potentially cancelled operations that share the same operationId

and is particularly useful in the GovernorTimelockAccess contract.

When successfully executing a scheduled operation, the whole Schedule struct of the

corresponding operationId is being deleted, essentially resetting the nonce . Note that

when canceling an operation the nonce entry of Schedule is not deleted. As a

consequence, the invariant where the nonce is an incremental value for each operationId

breaks.

This error could interfere with the proposals execution and cancellation in the

GovernorTimelockAccess contract.

To fix this issue, consider retaining the nonce value when an operation is successfully

executed through AccessManager .

Update: Resolved in pull request #4603.

CR-04 AccessManager's onlyAuthorized
Functions Cannot Be Executed Through relay()

The AccessManager contract provides two ways to execute a delay-restricted function after

its scheduling period is completed:

directly call the restricted function1.

Contracts 5.0 Release − Client-Reported − 71

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/ProxyAdmin.sol#L23
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/utils/UUPSUpgradeable.sol#L24
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4382
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/121be5dd09caa2f7ce731f0806b0e14761023bd6
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L95
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L633
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L633
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L197-L198
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/governance/extensions/GovernorTimelockAccess.sol#L197-L198
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L718
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L583-L584
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/adbb8c9d27e77452bc2253397908d3d044808e62/contracts/access/manager/AccessManager.sol#L583-L584
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4603
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol

call the relay function so that the restricted function is called by the AccessManager

contract itself

However, in the case of the AccessManager 's onlyAuthorized functions the execution

through relay always fails. This is because the onlyAuthorized modifier only checks the

permissions of msg.sender and nowhere considers the case where address(this) is the

caller.

This issue is not severe within the context of AccessManager alone since there is always the

option of a direct call to the onlyAuthorized function. However, this bug could result in

failing governance proposals execution, because the GovernorTimelockAccess extension

contract relies on relay for calling any function related to AccessManager .

Consider updating the onlyAuthorized modifier so that it also considers execution calls

through the relay function.

Update: Resolved in pull request #4612.

2.

Contracts 5.0 Release − Client-Reported − 72

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L102
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L102
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L745
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L745
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b5a3e693e7eeca8d5f608460fd8beeee8e332b03/contracts/access/manager/AccessManager.sol#L745
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/4612

Recommendations

[R01] Features and Design Suggestions

There are some features that are either missing or are partially implemented. We encourage the

team to go over this list and evaluate, in each individual case, whether it is worth adding to the

library:

The Nonces contract misses a function that increments the nonce and returns the

incremented one. Alternatively, the current function can be modified to return both the

old and new nonce values. This should improve extensibility and give the implementers

more choices on how they want to check nonce value correctness.

The MinimalForwarder contract is not using Nonces . Consider using the already

existing Nonces code in MinimalForwarder .

Across the library, non-explicit imports are used. To improve readability and make the

code easier to follow, especially when more definitions are inside the same file, consider

using explicit imports instead.

Across the library, mappings do not have named parameters for the keys and values.

Consider adopting the newly available syntax to make the code easier to understand and

follow.

As it is right now, ERC1155Supply limits the totalSupply of all tokenId s

cumulated all together with the _totalSupplyAll variable. Consider whether is worth

exploring the possibility of having an ERC1155SupplyAll that reflects the current

behavior and an ERC1155Supply that only caps individual tokenId amounts without

cumulating them.

[R02] Overridable Functions Risk Classification

The codebase is a general-purpose library and for this, it has to be extensible and flexible

enough to allow users to perform custom implementation on a variety of different use cases.

For this reason, the vast majority of functions defined in all contracts are virtual so that

those can be overridden.

However, in some special cases, overriding a function might be dangerous and undermine the

inner mechanics of some established flows. The connection between overridable functions and

•

•

•

•

•

Contracts 5.0 Release − Recommendations − 73

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/metatx/MinimalForwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/metatx/MinimalForwarder.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L61
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC1155/extensions/ERC1155Supply.sol#L61

other parts of the codebase that make use of them assuming a specific behavior is not always

easy to spot, and in general it doesn't mean that a user is not allowed to do a custom override,

but that instead, it might unexpectedly introduce errors.

As such, we encourage the team to establish security levels for all overridable functions and to

clearly classify those in the docstrings so that users are aware of the confidence that should be

used when creating custom overridden implementations. We identified three main categories

where all overridable functions can be grouped:

Unrestricted overrideability: functions that can be overridden and are either unused by

other parts of the codebase or if used, it's unlikely for a custom implementation, to break

other mechanics that make use of them.

Restricted overrideability: functions that can be overridden but special care should be

taken if used in combination with other contracts or if some anti-patterns are already

known so that users must avoid them.

Discouraged overrideability: functions that can be overridden but that are likely to

produce some issues when being re-implemented. Special care should be used by users

when dealing with this category.

Some examples of restricted and discouraged levels functions are:

The nonces getter of the Nonces library. We didn't identify any reason why someone

would like to re-implement such a function. However, we noticed that if the getter returns

something different from the actual nonce, the majority of contracts that make use of it

will likely break or need a refactor to adopt such change.

The cap function of the ERC20Capped , if re-implemented, will likely impact the

_update function that makes use of it.

The _transferTokenUnits function of Votes internally calls

_moveDelegateVotes with amount assuming a 1:1 relation between token units and

voting units, while the _delegate one calls the same but with _getVotingUnits .

The _getVotingUnits is overridable and by default it just returns the

balanceOf(account) , but if this were to be overridden to implement a quadratic or

any constant product formula, the _transferVotingUnits will still mistakenly

transfer amount because of the assumption. The _getVotingUnits should be of

unrestricted category, but the actual codebase makes it possible to introduce severe

issues if it was to be re-implemented.

Sensitive balanceOf and totalSupply functions of ERC20 can create issues on

other contracts that make use of them and assume their default behavior.

•

•

•

•

•

•

•

Contracts 5.0 Release − Recommendations − 74

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Nonces.sol#L18
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Capped.sol#L38
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L181
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/governance/utils/Votes.sol#L181
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/extensions/ERC20Votes.sol#L58
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L106
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L106
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L99
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/token/ERC20/ERC20.sol#L99

When thinking about how to display categories to users, consider adopting docstrings of the

following format

/// @Custom:overrideability { unrestricted | restricted | discouraged }

[R03] Testing and Fuzzing Opportunities - Phase 1

There are some functions in the library that might benefit from fuzzing. The following is a non-

exhaustive list:

The newly added _isValidDescriptionForProposer function.

The entire Checkpoints and DoubleEndedQueue libraries.

The majority of the functions in the StorageSlot and Strings libraries.

In other parts of the codebase, it would be beneficial to add specific test cases. Some

examples are:

Include a test to prove the correctness of this statement in the TimelockController

contract.

Similarly, consider conducting a test to prove that the chosen design in

ERC4626._deposit is aligned with the statement in the docstrings.

[R04] Inextensible Choice of Admin Address

The latest design of the TransparentUpgradeableProxy uses an immutable _admin

variable to avoid storage loads during the execution of the _fallback function, effectively

skipping the usage of the ERC1967 admin slot. This implies that there's no way to change the

_admin that is allowed to upgrade the proxy.

Consider wrapping the _admin variable into a virtual function that can be overridden to use

the ERC1967 admin slot instead so that user can choose their own tradeoffs when it comes to

using a transparent proxy.

[R05] Compatibility with EVM Chains Other Than
Ethereum

While performing the audit we noticed that some of the patterns followed by the code base

might not be compatible with chains in which Solidity code can be deployed.

•

•

•

•

•

Contracts 5.0 Release − Recommendations − 75

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/Governor.sol#L704
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/Governor.sol#L704
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/Checkpoints.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/DoubleEndedQueue.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/structs/DoubleEndedQueue.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/StorageSlot.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/StorageSlot.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/99a4cfca17279b77ae945b30cf9f7e87b21bf6f8/contracts/utils/Strings.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f8e3c375d19bd12f54222109dd0801c0e0b60dd2/contracts/governance/TimelockController.sol#L298
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f8e3c375d19bd12f54222109dd0801c0e0b60dd2/contracts/token/ERC20/extensions/ERC4626.sol#L218-L219
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L84

Based on the official documentation of zkSync Era:

CREATE and CREATE2 on zkSync Era need to have the compiler to resolve the

bytecode beforehand. Unfortunately, Create2.deploy takes it as input parameter and

will not work if it's going to be implemented as an external user input. Similarly the

Clones contract might be incompatible due to the same.

There might be issues with mload and mstore . On zkSync Era, memory growth is in

bytes, while on EVM is in words. The result of an mstore(100,0) will give an msize

of 160 on EVM, of 132 on zkEVM. So any contract that doesn't deal with the 32

bytes = 1 word growth will likely behave differently on EVM vs zkEVM. An example

can be the toETHSignedMessageHash of MessageHashUtils or the toString of

the ShortStrings contract.

CALLDATACOPY and CALLDATALOAD will panic at 2^32-33 offset values.

_msgSender from ERC2771Context might fail. The same is true for the _delegate

function of Proxy .

Moreover, based on this other documentation page, another difference with zkSync Era is that

block.number and block.timestamp within zkSync VM execution refers to the latest L1

batch that has been sent to Ethereum mainnet and not to the current L2 block number and

timestamp. L1 batches might take some time to be finalized on L1 so the main effect is that

block.number and timestamp would somehow be stuck to the same value until the next

batch is finalized, definitely making time less continuous. Other rollups may have similar

behaviors (Arbitrum). In terms of how this might affect the library let's imagine that an L1 batch

has been pushed and another one will be added in a few minutes. In between the two batches:

Votes will potentially break its mechanism. The getPastVotes function takes

timepoint as reference. timepoint can be anything in the past but in this context it

can't be something which is in the past and also after the latest L1 batch timepoint ,

otherwise the function will revert as if it was an attempt to read in the future.

TimelockController operations might not move because the recorded timestamp

refers to the previous L1 batch even if in the L2 VM context the timestamp is correct

enough to move the proposals to another state.

VestingWallet changes in vested amount are reflected on an L1-batches-basis

instead of the L2 VM time base.

Notice that this is not a comprehensive list and more issues might emerge from such subtle

differences.

•

•

•

•

•

•

Contracts 5.0 Release − Recommendations − 76

https://era.zksync.io/docs/reference/architecture/differences-with-ethereum.html
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Create2.sol#L45
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/Create2.sol#L45
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Clones.sol
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Clones.sol
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/MessageHashUtils.sol#L29
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/MessageHashUtils.sol#L29
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/cryptography/MessageHashUtils.sol#L29
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/ShortStrings.sol#L63
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/ShortStrings.sol#L63
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/ShortStrings.sol#L63
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/utils/ShortStrings.sol#L63
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/metatx/ERC2771Context.sol#L24
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Proxy.sol#L22
https://github.com/ernestognw/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/proxy/Proxy.sol#L22
https://era.zksync.io/docs/reference/concepts/blocks.html#block-number-and-timestamp-considerations
https://developer.arbitrum.io/time#ethereum-block-numbers-within-arbitrum
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/governance/utils/Votes.sol#L88
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8fff875589443c607ac4ef2d201a6d8bec5a43c8/contracts/governance/utils/Votes.sol#L88

Based on the official documentation of Optimism:

tx.origin might be aliased (and so msg.sender) if it's an L1 -> L2 message. This

might affect Context , ERC2771Context and TransparentUpgradeableProxy .

This same issue applies to Arbitrum, and it's defined as address aliasing. The same

happens on zkSync Era.

Based on the official documentation Polygon zkEVM:

block.number returns the number of processable transactions, not an actual block

number as in L2s. Any contract making use of it will have a wrong assumption of what

the returned value is.

Notice that this is not a complete list of all the possible chains with their differences and is a

mere list of examples that we were able to lift up by a rapid analysis. There might be other

chains with completely different behaviours that we are not aware of.

It is important for the contracts team to establish a framework in which the library code can be

tested on different VMs with their differences. Unfortunately, many alternative chains have

different results if the information is queried through RPC calls or within VM execution directly

(i.e., block.number or chain.id). For this, the suggestion is to test the contracts directly

within VM executions using local setup nodes for each of the chains. There are no known tools

that facilitate such operation, so we suggest further research on the topic.

[R06] Tokens Might Get Stuck in the Contract

The transferFrom and the _transfer functions of the ERC721 contract allows the

recipient to be address(this) since they don't perform the onERC721Received hook

check. While the ERC721Wrapper provides a _recover method for such scenario, the

ERC721 would end up with tokens effectively stuck in the contract.

Consider whether is worth adding an internal _recover function or prohibiting

address(this) as a recipient.

In general, the issue has been officially raised in Phase 1 too but we decided to add

recommendations instead because we think it's a general issue that should be solved by

taking a common decision and we defer to the team on how to proceed from here.

•

•

Contracts 5.0 Release − Recommendations − 77

https://community.optimism.io/docs/developers/build/differences/#
https://developer.arbitrum.io/arbitrum-ethereum-differences#l1-to-l2-messages
https://zkevm.polygon.technology/docs/protocol/evm-diff/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L145
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L145
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L350
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L350
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L450
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L450
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/ERC721.sol#L450
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Wrapper.sol#L87
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/token/ERC721/extensions/ERC721Wrapper.sol#L87

[R07] Testing and Fuzzing Opportunities - Phase
4

There are some functions in the library that might benefit from fuzzing. The following is a non-

exhaustive list:

The entire SignedMath library.

[R08] Overlapping Operation of Multiple Delay
Mechanisms in AccessManager

There are currently three different delay mechanisms in the AccessManager contract:

Execution delays: access to restricted functions is allowed to members of an authorized

group with respect to each member's executionDelay . This means that in order to

execute a restricted function for which they are authorized, a member should first

schedule the operation and then trigger its execution after executionDelay period of

time has passed. This delay is set per member.

Group granting delays: the delay between the time point when an account is granted

membership and the time point that the member becomes active, in essence allowed to

perform or schedule a restricted operation. This delay is set per group.

Class admin delays: these delays are also considered for some sensitive operations at

the AccessManager contract that fall under no delay restriction other than the caller's

own executionDelay .

The operation field of these three mechanisms could overlap in some cases so that it is hard to

extract strong constraints about the delay restrictions applied to a set of sensitive operations,

e.g. calling a restricted function on the target contract, granting membership to authorized

groups, or configuring the AccessManager contract.

For example, an authorized member can access some restricted function functionA with

executionDelayA , but could possibly access functionA faster if they are also admins of

functionA 's groups and can grant membership to a new account with zero

executionDelay for this new member. The admin will be able to access functionA faster

if their executionDelay for granting membership and the grantDelay for this group are

overall lower than executionDelayA .

•

•

•

•

Contracts 5.0 Release − Recommendations − 78

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/math/SignedMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/b027c3541c03348767b62d45721eaa7d50f02b65/contracts/utils/math/SignedMath.sol

The administrators of the AccessManager contract should take these edge cases into

consideration when configuring the delay values. However, it's admittedly not trivial to

configure all its parameters in a secure and effective manner.

The design could be made clearer and simpler if grant delays are omitted in favor of minimum

execution delays per group that apply to all groups' members. However, there are some cases

where zero execution delay is useful. For example, administrative entities that take decisions

by running a voting procedure, like DAOs, would be expected to perform a single step in order

to execute restricted functionality. Thus, this design simplification should be accompanied by a

solution for cases like a DAO administrator. For example, scheduled operations that have

passed the delay period could be open for anyone to execute or the schedule function could

accept an additional address parameter for the scheduler to provide a trusted account to

relay the scheduled operation on their behalf.

Consider reviewing the above design suggestions and try to simplify the delay mechanisms so

that it becomes more comprehensive, needing less administrative effort to manage effectively

and securely and allowing special entities (like DAOs) to interact efficiently.

Contracts 5.0 Release − Recommendations − 79

Conclusion

Version 5 is a new milestone not only for the development team but also for OpenZeppelin as a
whole. The level of appreciation that previous versions of the library have shown is outstanding
and the number of protocols and projects that rely on it is always increasing. Because of this,
there has been an enormous effort from many team members to make this possible and deliver
impactful changes that we hope can allow for more robust and new projects to be built.

As the security services team we are happy to be part of it and we particularly value the
research, the study and the continuous back and forth with changes and new feature that the
development team have been through, but also the engagement in the endless discussions
and brainstorming sessions with us.

Waiting to see what the world will build with it, we wish all the best to this new release!

From OpenZeppelin's Security Services team with

Contracts 5.0 Release − Conclusion − 80

	Contracts 5.0 Release
	Table of Contents
	Summary
	Scope
	Phase 1
	Phase 2
	Phase 3
	Phase 4
	Phase 5

	Overview
	Security Considerations and Threat Model
	High Severity
	Potential Inaccuracies in Voting Unit Accounting When Overriding the ERC20Votes#_getVotingUnits Function's Formula
	Non-Compliance of ERC2771Context With ERC Could Lead to Incorrect Address Extraction
	Risk of Failed L2 and Sidechain Deployments with Solidity Version 0.8.20

	Medium Severity
	Potential Reentrancy in ERC1155._update Function
	Unhandled Silent Failures
	Lack of Context Usage
	Tokens Might Get Stuck in the Contract - Phase 1
	ERC2771Forwarder May Call Receiver Without Appending Sender's Address
	Immutable Beneficiary Security Risks and Potential Loss of Funds
	Unnecessarily Complex and Limited Design of customRevert Callback
	State Updated in Modifiers May Be Corrupted
	Function withUpdateAt Does Not Behave as Expected
	Proposal Execution Could Fail Due to Zero-Delayed AccessManaged Targets
	Contradictory _cancel Behavior

	Low Severity
	Potentially Incorrect maxFlashLoan Amount When Using ERC20FlashMint And ERC20Capped Together
	Context Contract Is Not Used
	ERC2771Forwarder Must Not Hold Token Approvals
	Error-prone Failure Semantics of verify in ERC2771Forwarder
	Inconsistent Solidity Version Used in ERC1967Utils
	Lack of Access Control and Flexibility in VestingWallet's Release Methods
	Potentially Trapped ETH in ERC2771Forwarder
	Reentrancy Risk in ERC1967Utils._setBeacon
	Risk of Division by Zero in VestingWallet
	Risk of Ownership Loss Due to Single-Step Ownership Transfer in UpgradeableBeacon and ProxyAdmin
	ERC-165 Check Is Too Permissive
	address(0) Is Allowed as the Initial Owner
	Enumeration Methods Are Unnecessarily Limited
	Proposal Front-Running Protection Fails Silently
	TimelockController Allows Sending ETH by Default
	Unintuitive and Inconsistent Proposal State Timing
	Overloaded Error Messages

	Notes & Additional Information
	Allowances And Approval Inconsistencies - Phase 1
	Gas Optimization - Phase 1
	Contracts Are Not abstract
	EIP-3156 Inconsistency
	Missing Interface
	Missing Or Incorrect Docstrings - Phase 1
	Naming Suggestions - Phase 1
	Outdated Solidity Version
	Uncommented Sensitive Operation
	Unused Custom Errors
	Unused or Duplicated Imports And Extensions - Phase 1
	Outdated Version in Docstrings
	Event Definition Improvement Suggestions
	Code Style Suggestions - Phase 1
	Inadequate Documentation for Reverting Payable Upgrades with Empty Data
	Incompatibility of VestingWallet with Rebasing Tokens
	Lack of Event Emission - Phase 2
	Lack of Inclusion of a "Vesting Cliff" Feature
	Missing Or Incorrect Docstrings - Phase 2
	Naming Suggestions - Phase 2
	Trusted Forwarder Address Lacks External Visibility
	Unused Named Return Variables - Phase 2
	Code Style Suggestions - Phase 3
	Some ERC-721 Features Might Be Atomically Reset
	Missing or Incorrect Docstrings - Phase 3
	Lack of Event Emission - Phase 3
	Repeated Code
	Hardcoded Magic Constant
	_setTokenURI Does Not Allow Setting URI for Non-Existing Tokens
	Default Handling Contract of the DEFAULT_ADMIN_ROLE Is Complex
	Unused Named Return Variables - Phase 3
	Allowance and Approval Inconsistencies - Phase 3
	Confusing Revert Messages Due to Underflow
	Missing or Incorrect Docstrings - Phase 4
	Refactor AccessManager Data Structures to Reduce Design Complexity
	Unused Variables
	Inconsistent Use of Named Return Variables - Phase 4
	Missing Zero Address Check in AccessManager Constructor
	Use of Custom Errors
	Code Style Suggestions - Phase 4
	TODO Comments
	Gas Optimization - Phase 4
	Typographical Errors - Phase 4
	Mismatch Between Contract and Interface
	Naming Suggestions - Phase 4
	Missing or Incorrect Docstrings - Phase 5
	Gas Optimizations - Phase 5
	Inconsistent Use of Named Return Variables - Phase 5
	Unused Import - Phase 5
	Inconsistent Solidity Version Used in GovernorStorage
	Long Comment Lines
	Unused Named Return Variables - Phase 5
	Typographical Errors - Phase 5
	Naming Suggestions - Phase 5
	Extraneous Code

	Client-Reported
	Inconsistent Use of Hooks
	Wrong Visibility for a Public Constant
	Inconsistent nonce Enumeration in AccessManager
	AccessManager's onlyAuthorized Functions Cannot Be Executed Through relay()

	Recommendations
	[R01] Features and Design Suggestions
	[R02] Overridable Functions Risk Classification
	[R03] Testing and Fuzzing Opportunities - Phase 1
	[R04] Inextensible Choice of Admin Address
	[R05] Compatibility with EVM Chains Other Than Ethereum
	[R06] Tokens Might Get Stuck in the Contract
	[R07] Testing and Fuzzing Opportunities - Phase 4
	[R08] Overlapping Operation of Multiple Delay Mechanisms in AccessManager

	Conclusion

